Title: Conductance of nanosystems with interaction
1Conductance of nanosystems with interaction
Anton Ramak and Toma Rejec Faculty of
Mathematics and Physics, University of Ljubljana,
Slovenia Joef Stefan Institute, Ljubljana,
Slovenia QinetiQ, Great Malvern, UK
2Strong correlations in nanosystems
3 Open system
4 Open system Ring
with auxiliary flux
Time-reversal symmetry f0 0
5 Fermi liquid universality of the
ground-state energy
Number of electrons odd
6Linear conductance from the ground-state energy
7Linear conductance from the ground-state energy
8Linear conductance from the ground-state energy
9Example I Non-interacting double-barrier system
10Example II Kondo effect in a quantum dot
11Example III Aharonov Bohm ring
Broken time-reversal symmetry
Compared with W. Hoffstetter et al., Phys. Rev.
Lett. 87, 156803 (2001)
12Summary
- The ground state energy of the ring system with
flux has a universal form if open system is
a Fermi liquid at T 0.
E(f)
- Linear conductance can then be extracted from
the ground-state energy
T. Rejec and A. Ramak, Phys. Rev. B 68, 033306
(2003) 68 035342 (2003)
13Formulae are exact IF the system is Fermi liquid
- note
- linear conductance
- zero temperature
- non-interacting single-channel leads
14Conductance formalisms
U 0
non-equilibrium transport T ? 0, V ? 0
Landauer Büttiker formula
In Fermi liquid systems
Fisher Lee relation
15Proof of the method
Step 1. Conductance of a Fermi liquid system at
T0
Kubo
T0
define (n.i. Fisher-Lee)
Landauer
16Step 2. Quasiparticle hamiltonian (Landau Fermi
liquid)
17Step 3. Quasiparticles in a finite system
N
18Step 4. Validity of the conductance formulas