Section 3'2 Compound Statements and Connectives - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Section 3'2 Compound Statements and Connectives

Description:

p: Barry Bonds is a baseball player. q: Barry Bonds is a basketball player. ... – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 15
Provided by: walter2
Category:

less

Transcript and Presenter's Notes

Title: Section 3'2 Compound Statements and Connectives


1
Section 3.2 Compound Statements and Connectives
  • Thinking Mathematically
  • Math 1001

2
Objectives
  • Express compound statements in symbolic form.
  • Express symbolic statements with parentheses in
    English.

3
Compound Statements
Simple statements can be connected with and,
Either or, If then, or if and only if.
These more complicated statements are called
compound.
Either Miami is a city in Florida or Atlanta is
a city in Florida is a compound statement that
is true.
Miami is a city in Florida and Atlanta is a city
in Florida is a compound statement that is false.
4
And Statements
5
Either ... or Statements
6
If ... then Statements
7
If and only if Statements
8
Example 4a Translating from English to Symbolic
Form
  • p the word is set
  • q the word has 464 meanings
  • The word is set if and only if the word has 464
    meanings.

9
Example 4b Translating from English to Symbolic
Form
  • p the word is set
  • q the word has 464 meanings
  • The word does not have 464 meanings if and only
    if the word is not set.

10
Symbolic Logic
Let p and q be statements.
11
Example 5a Expressing Symbolic Statement With and
Without Parentheses in English.
  • p Barry Bonds is a baseball player.
  • q Barry Bonds is a basketball player.

12
Example 5b Expressing Symbolic Statement With and
Without Parentheses in English.
  • p Barry Bonds is a baseball player.
  • q Barry Bonds is a basketball player.

13
Example 5c Expressing Symbolic Statement With and
Without Parentheses in English.
  • p Barry Bonds is a baseball player.
  • q Barry Bonds is a basketball player.

14
Section 3.2 Homework
  • 1 68 odd
Write a Comment
User Comments (0)
About PowerShow.com