Optimal Conditional Reachability for Priced Timed Automata - PowerPoint PPT Presentation

1 / 49
About This Presentation
Title:

Optimal Conditional Reachability for Priced Timed Automata

Description:

Optimal. Conditional Reachability for. Priced Timed Automata. Kim G. Larsen. Jacob I. Rasmussen ... EXAMPLE: Optimal rescue plan for cars with. different ... – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 50
Provided by: brian534
Category:

less

Transcript and Presenter's Notes

Title: Optimal Conditional Reachability for Priced Timed Automata


1
Optimal Conditional Reachability for Priced
Timed Automata
  • Kim G. Larsen
  • Jacob I. Rasmussen

2
Real Time Scheduling
  • Only 1 Pass
  • Cheat is possible (drive close to car with
    Pass)

UNSAFE
Crossing Times
5
10
Pass
20
25
SAFE
CAN THEY MAKE IT TO SAFEWITHIN 70 MINUTES ???
The Car Bridge Problem
3
Real Time Scheduling
Solve Scheduling Problem using UPPAAL
SAFE
4
Optimal Reachability forPriced Timed Automata
  • A short review

5
(No Transcript)
6
EXAMPLE Optimal rescue plan for cars with
different subscription rates for
city driving !
Golf
Citroen
SAFE
9
2
BMW
Datsun
3
10
OPTIMAL PLAN HAS ACCUMULATED COST195 and TOTAL
TIME65!
7
Priced Timed Automata
Behrmann, Fehnker, et all (HSCC01)
Timed Automata COST variable
Alur, Torre, Pappas (HSCC01)
l2
l1
l3
x 2 3 y
0 y 4
c4
c2
?
x0 c1
c4
cost rate
cost update
y 4
x0
8
Priced Timed Automata
Behrmann, Fehnker, et all (HSCC01)
Timed Automata COST variable
Alur, Torre, Pappas (HSCC01)
l2
l1
l3
x 2 3 y
0 y 4
c4
c2
?
x0 c1
c4
cost rate
cost update
y 4
x0
TRACES
e(3)
(l1,xy0) (l1,xy3) (l2,x0,y3)
(l3,_,_)
12
1
4
Ã¥ c17
9
Priced Timed Automata
Behrmann, Fehnker, et all (HSCC01)
Timed Automata COST variable
Alur, Torre, Pappas (HSCC01)
l2
l1
l3
x 2 3 y
0 y 4
c4
c2
?
x0 c1
c4
Problem Find the minimum cost of reaching
location l3
cost rate
cost update
y 4
x0
TRACES
e(3)
(l1,xy0) (l1,xy3) (l2,x0,y3)
(l3,_,_)
12
1
4
Ã¥ c17
e(2.5)
e(.5)
(l1,xy0) (l1,xy2.5) (l2,x0,y2.5)
(l2,x0.5,y3) (l3,_,_)
10
1
1
4
Ã¥ c16
e(3)
(l1,xy0) (l2,x0,y0) (l2,x3,y3)
(l2,x0,y3) (l3,_,_)
1
6
0
4
Ã¥ c11
10
Symbolic Semantics
11
Zones
y
Operations
Z
x
12
Priced Zone
CAV01
y
Z
2
-1
4
x
13
Reset
Z
y
2
2
-1
4
y0
x
14
Reset
Z
y
2
2
-1
4
y0
x
yZ
15
Reset
Z
y
2
2
-1
4
y0
x
yZ
6
16
Reset
Z
y
2
2
-1
4
y0
-1
1
x
yZ
6
4
A split of yZ
17
Delay
y
Z
3
-1
4
x
18
Delay
y
Z
3
-1
4
x
19
Delay
3
3
y
Z
2
3
-1
4
x
20
Delay
3
4
-1
y
0
Z
3
A split of
3
-1
4
x
21
Branch Bound Algorithm
22
Branch Bound Algorithm
23
Branch Bound Algorithm
24
Branch Bound Algorithm
25
Branch Bound Algorithm
26
Branch Bound Algorithm
Z is bigger cheaper than Z
is a well-quasi ordering which guarantees
termination!
27
Optimal Conditional Reachability
To be presented at FOSSACS05
28
CONDITIONAL
EXAMPLE Optimal rescue plan for cars with
different subscription rates for
city driving !
Golf
Citroen
SAFE
9
2
BMW
Datsun
3
10
min CostMYCAR 270 time 70
29
Optimal Conditional Reachability
Dual-priced TA
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 2
x 3 y 2
PROBLEM Reach l3 in a way which
minimizes c subject to d 4
SOLUTION c 11/3 ? wait 1/3 in l1
goto l2 wait 5/3 in l2 goto l3
30
Discrete Trajectories
0,1
l1,0,0
l2,0,0
l2,1,0
l2,2,0
1,4
2,1
2,1
2,1
0,1
l2,3,1
l1,1,1
l2,1,1
l2,2,1
2,1
1,4
0,0
2,1
0,0
0,1
l1,2,2
l2,2,2
l2,3,2
0,0
0,0
?
31
Discrete Trajectories
0,1
l1,0,0
l2,0,0
l2,1,0
l2,2,0
1,4
2,1
2,1
2,1
0,1
l2,3,1
l1,1,1
l2,1,1
l2,2,1
2,1
1,4
0,0
2,1
d
0,0
0,1
l1,2,2
l2,2,2
l2,3,2
10
8
6
4
0,0
2
0,0
?
c
4
2
6
4
32
Dual Priced Zones
33
Dual Priced Zones
34
Dual Priced Zones
35
Reset
36
Reset
37
Reset
38
Reset
39
Key Lemma
40
b1
b2
0.8
a1
0.3
a2
41
b1
b2
a1
a2
42
b1
b2
a1
a2
43
a2
a1
b1
b2
44
a2
a1
b1
b2
45
not convex !!!
46
Exploration
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 3 y 2
x 2
47
Exploration
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 3 y 2
x 2
48
Exploration
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 3 y 2
x 2
49
Termination
THEOREM Optimal conditional reachability for
multi-priced TA is computable.
Write a Comment
User Comments (0)
About PowerShow.com