Title: Optimal Conditional Reachability for Priced Timed Automata
1Optimal Conditional Reachability for Priced
Timed Automata
- Kim G. Larsen
- Jacob I. Rasmussen
-
2Real Time Scheduling
- Only 1 Pass
- Cheat is possible (drive close to car with
Pass)
UNSAFE
Crossing Times
5
10
Pass
20
25
SAFE
CAN THEY MAKE IT TO SAFEWITHIN 70 MINUTES ???
The Car Bridge Problem
3Real Time Scheduling
Solve Scheduling Problem using UPPAAL
SAFE
4Optimal Reachability forPriced Timed Automata
5(No Transcript)
6EXAMPLE Optimal rescue plan for cars with
different subscription rates for
city driving !
Golf
Citroen
SAFE
9
2
BMW
Datsun
3
10
OPTIMAL PLAN HAS ACCUMULATED COST195 and TOTAL
TIME65!
7Priced Timed Automata
Behrmann, Fehnker, et all (HSCC01)
Timed Automata COST variable
Alur, Torre, Pappas (HSCC01)
l2
l1
l3
x 2 3 y
0 y 4
c4
c2
?
x0 c1
c4
cost rate
cost update
y 4
x0
8Priced Timed Automata
Behrmann, Fehnker, et all (HSCC01)
Timed Automata COST variable
Alur, Torre, Pappas (HSCC01)
l2
l1
l3
x 2 3 y
0 y 4
c4
c2
?
x0 c1
c4
cost rate
cost update
y 4
x0
TRACES
e(3)
(l1,xy0) (l1,xy3) (l2,x0,y3)
(l3,_,_)
12
1
4
Ã¥ c17
9Priced Timed Automata
Behrmann, Fehnker, et all (HSCC01)
Timed Automata COST variable
Alur, Torre, Pappas (HSCC01)
l2
l1
l3
x 2 3 y
0 y 4
c4
c2
?
x0 c1
c4
Problem Find the minimum cost of reaching
location l3
cost rate
cost update
y 4
x0
TRACES
e(3)
(l1,xy0) (l1,xy3) (l2,x0,y3)
(l3,_,_)
12
1
4
Ã¥ c17
e(2.5)
e(.5)
(l1,xy0) (l1,xy2.5) (l2,x0,y2.5)
(l2,x0.5,y3) (l3,_,_)
10
1
1
4
Ã¥ c16
e(3)
(l1,xy0) (l2,x0,y0) (l2,x3,y3)
(l2,x0,y3) (l3,_,_)
1
6
0
4
Ã¥ c11
10Symbolic Semantics
11Zones
y
Operations
Z
x
12Priced Zone
CAV01
y
Z
2
-1
4
x
13Reset
Z
y
2
2
-1
4
y0
x
14Reset
Z
y
2
2
-1
4
y0
x
yZ
15Reset
Z
y
2
2
-1
4
y0
x
yZ
6
16Reset
Z
y
2
2
-1
4
y0
-1
1
x
yZ
6
4
A split of yZ
17Delay
y
Z
3
-1
4
x
18Delay
y
Z
3
-1
4
x
19Delay
3
3
y
Z
2
3
-1
4
x
20Delay
3
4
-1
y
0
Z
3
A split of
3
-1
4
x
21Branch Bound Algorithm
22Branch Bound Algorithm
23Branch Bound Algorithm
24Branch Bound Algorithm
25Branch Bound Algorithm
26Branch Bound Algorithm
Z is bigger cheaper than Z
is a well-quasi ordering which guarantees
termination!
27Optimal Conditional Reachability
To be presented at FOSSACS05
28CONDITIONAL
EXAMPLE Optimal rescue plan for cars with
different subscription rates for
city driving !
Golf
Citroen
SAFE
9
2
BMW
Datsun
3
10
min CostMYCAR 270 time 70
29Optimal Conditional Reachability
Dual-priced TA
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 2
x 3 y 2
PROBLEM Reach l3 in a way which
minimizes c subject to d 4
SOLUTION c 11/3 ? wait 1/3 in l1
goto l2 wait 5/3 in l2 goto l3
30Discrete Trajectories
0,1
l1,0,0
l2,0,0
l2,1,0
l2,2,0
1,4
2,1
2,1
2,1
0,1
l2,3,1
l1,1,1
l2,1,1
l2,2,1
2,1
1,4
0,0
2,1
0,0
0,1
l1,2,2
l2,2,2
l2,3,2
0,0
0,0
?
31Discrete Trajectories
0,1
l1,0,0
l2,0,0
l2,1,0
l2,2,0
1,4
2,1
2,1
2,1
0,1
l2,3,1
l1,1,1
l2,1,1
l2,2,1
2,1
1,4
0,0
2,1
d
0,0
0,1
l1,2,2
l2,2,2
l2,3,2
10
8
6
4
0,0
2
0,0
?
c
4
2
6
4
32Dual Priced Zones
33Dual Priced Zones
34Dual Priced Zones
35Reset
36Reset
37Reset
38Reset
39Key Lemma
40b1
b2
0.8
a1
0.3
a2
41b1
b2
a1
a2
42b1
b2
a1
a2
43a2
a1
b1
b2
44a2
a1
b1
b2
45not convex !!!
46Exploration
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 3 y 2
x 2
47Exploration
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 3 y 2
x 2
48Exploration
l2
l1
l3
x 2 y 1
d1
c 1 d 4
c 2 d 1
?
y0
y0
x 3 y 2
x 2
49Termination
THEOREM Optimal conditional reachability for
multi-priced TA is computable.