Dimensions of time and space - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Dimensions of time and space

Description:

Micro-scale: cell, mineral surface, molecular borders, leaf, root, ... date: A) the lunar mare; B) King Tut's sarcophagus; C) a granitic rock from the Erzgebirge? ... – PowerPoint PPT presentation

Number of Views:164
Avg rating:3.0/5.0
Slides: 24
Provided by: drmartin3
Category:
Tags: dimensions | king | space | time | tut

less

Transcript and Presenter's Notes

Title: Dimensions of time and space


1
Dimensions of time and space
  • Micro-scale cell, mineral surface, molecular
    borders, leaf, root,
  • Meso-scale single animal or plant, and its
    neighbors, county, community,
  • Macroscale ecosystems, global system, earth
    sphere,
  • Geologic time
  • Biologic time
  • Pedologic time
  • Political time
  • Seasonal/daily time
  • Events

2
Environmental cycles
Pedology
Geology
Biology
Hydrology
Toxicology
Chemistry
3
Geochemical cycles
  • what is a cycle?
  • reservoirs
  • element fluxes
  • flux rates
  • retention times

4
Dimensions of space
from Morrison2 and Eames2 (1994) Powers of 10
5
System times and systemic parameters
example
parameter
system
system time
organisms
element conc. in organism
biochemical and behavioral change
molecular level
min days
death, reaction, appearance
physiol./morpholog. change
cell, simple organism
hrs weeks
reproduction numbers
growth, develop-ment, propagation,
organisms
days months
population
too many old or young ones
age structure
abundance, distribution
weeks years
ecosystem
after Kümmerer (1993)
food webs
structure, dynamics, function
Biocoenosis, biotope, biome
months years
spheres
T, pH, N-cycle
element, energy fluxes, cycles
years decades
6
Dimensions of geological time
10-12 10-10 108
10-6 10-4 10-2
100 102 104 106
108 1010 1012
time
7
The geological time-scale
Eon
Era
Period
Epoch
100
1.4
12
8
Relative age versus absolute age
20 Mio. yrs., lava flow (dike and sill)
14 sediment strata
34 Mio. yrs., intrusive igneous rock body
Stratigraphy versus isotopic dating
9
Geologic time radiometric dating
10
Biologic time
11
Biologic time species evolution
a
b
c
d
e
  • Hyracotherium (Eohippus)
  • Orohippus
  • Mesohippus
  • Merychippus
  • Pliohippus
  • Equus


f
from Ernst (2000)
55 Mio. years
12
Biologic time pedologic time
Soils as part of an ecosystem ...
from Schachtschabel et al. (1992)
Structure of a forest ecotope (Hainsimsen-Buchenwa
ld auf basen-armer Braunerde mit Moder aus
Löß/Sandstein-Fließerde des Solling). Area 100
m2 TG (g) after data from Ellenberg
13
Biogeochemical cycles in forests
boreal forest 350 a needle forest, mod.
climate 17 a deciduous forest, mod.
climate 4 a Mediterranean macchia 3.8
a tropical rain forest 0.4 a
14
System times and systemic parameters
after Kümmerer (1993)
15
Pedologic time
weathering and mineral formation formation of
humus types texture formation clay
displacement podsolation redoximorphosis carbonati
sation over salting turbations matter
displacement in a landscape profile
differentiation
16
Pedologic time aging of soils under European
conditions
3. transition phase Humus-desintegration
4. Stationary phase, low elasticity
5. transition phase Build-up of destruent-refugia
6. Podsolisation
after Ulrich (1997)
8. Krypto-podsolisation
Downward arrows degradation through acid stress,
soil acidification, nutrient losses Upward
arrows weathering, deposition, management
17
Political time time to act
1974 Rawlins Molina discover the ozone
destruction potential of CFCs 1987 Montreal
protocol on reduction of CFCs 1992 Rio
declaration on environment and development 1992 i
nternational agreement on production stop for
CFCs 1994 maximum tropospheric CFC levels
(organic Cl- and Br- molecules) 1995 Nobel price
for Crutzen, Molina, and Rowland for ozone
research 1999 maximum stratospheric CFC levels
Human civilisation 10,000 years Magellan
circumnavigates the Earth 3 years Circumnavigate
Earth today 24 hours Telecommunication speed of
light Apollo project 8 years Environmental
awareness 30 years? Modern election periods 4
years
18
Seasonal time daily time
Solar radiation lake water heat budget
lake water stratification plankton
distribution of biomass accumulation
species distribution food web lake type
usage potential for humans Photoperiodicity
light distribution flowering and fruiting
capacity of plants Growth Seasonal growth and
decay gestation periods fruiting
consequences for soils, surface and groundwater,
catchments, land-use,
Figs. Zierold (2001) top Carapax growth
bottom SEM, carapax Limnadia l.
19
Catastrophes natural hazards
Frequency trend during the late 20th century A)
number of disasters B) annual costs from Bennett
Doyle (1997)
Meteorite impact Earthquake (tsunamis) Bush fire
(man-made or lightning) Volcanism Mass movements
(land or rockslide, subsidence) Flooding (dam
instability, seawater intrusion, ) Weather
(heavy rain and thunderstorms, hurricanes )
20
Natural hazards likeliness
from Bennett Doyle (1997)
21
Natural hazards costs benefits
from Bennett Doyle (1997)
22
Questions to Dimensions of time and space
  • Describe the methods that have been employed to
    pinpoint events in geologic time, and discuss the
    nature of the dating, including contrasting
    accuracies and degrees of quantitativeness. What
    methods would you employ to date A) the lunar
    mare B) King Tuts sarcophagus C) a granitic
    rock from the Erzgebirge?
  • Global change takes place at several contrasting
    rates. How are these rates related to the A)
    evolution of biologic species B) compositional
    change of the atmosphere C) adoptiveness of
    environmental regulations?
  • Debate the influence of political time scales on
    implementation of environmental policy
  • Why is the rate of biologic change accelerating,
    and how will it influence the global to local
    ecology?
  • What steps should the world population take if
    astronomers were to predict that in 631 days, a
    15-kilometer-diameter asteroid in Earth-crossing
    orbit is likely to impact the interior of
    Siberia?
  • How would you go about testing the concept of
    uniformitarism? Does it matter if this concept
    proves to be incorrect?

23
Kurzfassung 2. Vorlesung (Dimensionen von Zeit
und Raum)
  • Die Dimensionen von Zeit und Raum sind und
    bleiben den meisten Menschen abstrakt. Umso
    wichtiger ist es, zu beiden eine möglichst
    realistische Vorstellung zu gewinnen. Dabei wird
    deutlich, dass es viele parallel aktive
    Dimensionen gibt, die eigenen Gesetzen gehorchen.
    An Beispielen werden geologische Zeit,
    biologische Zeit, pedologische Zeit, politische
    Zeit, jahreszeitliche und tägliche Zeit und
    spezielle Ereignisse diskutiert. Räumlich bewegen
    wir uns vom Makroskaligen (System Erde,
    Ökosysteme) über mesoskalige Bereiche
    (Einzelorganismus, dessen Nachbarn, eine
    Lebensgemeinschaft) bis zu mikroskaligen
    Prozessen (Zelle, Mineraloberfläche,
    Molekülgrenzen, Blattoberfläche...). Es gilt,
    sich bei Projekten aller Art der dabei relevanten
    Dimension(en) von Zeit und Raum bewusst zu sein.
    Dazu dienen auch die Übungsfragen zum Schluss.

Lesestoff Ernst WG (2000) Time scales,
geologic, biologic, political. In Ernst WG (ed)
Earth Systems. Processes and issues. Cambridge
University Press I 2644 Morris P, Morris P,
Eames C, Eames R (1994) Zehnhoch. Dimensionen
zwischen Quarks und Galaxien. Zweitausendeins,
Frankfurt 155 S.
Write a Comment
User Comments (0)
About PowerShow.com