Title: ILC intro
1ILC intro
Links Presentation B. Barish at CERN SPC, Sept.
2005 http//ab-div.web.cern.ch/ab-div/Info/2005/Ba
rishSPC050913.ppt ILC news and
ILC-home http//www.linearcollider.org/newsline/a
rchive/08092005.html ECFA-ILC pages http//www.d
esy.de/conferences/ecfa-lc-study.html Vienna,
ECFA-ILC workshop Nov. 2005 http//wwwhephy.oeaw.
ac.at/p3w/ilc/ws05/ Detector concepts http//phy
sics.uoregon.edu/lc/wwstudy/concepts/ Tizianos
presentation, PH senior staff 23/11/200 http//ph
-dep.web.cern.ch/ph-dep/News/FacultyMtg25Nov05/cam
poresi.pdf
2basic ILC performance aims
- Ecm adjustable from 200 500 GeV (or even down
to Z0 peak) - Upgradable to Ecm 1 TeV
- Luminosity ? ?Ldt 500 fb-1 in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1
- Electron polarization of at least 80
3schematic machine layout
single arm drawn
4Beam Delivery
- 2820 bunches, 300 µm, 300 ns separtion
- bunch train duration 0.9 ms, 5Hz repetition
rate - Optional 20 mrad or 2 mrad beam crossing
- 1 or 2 interaction points ?
- gamma-gamma and e-gamma options
5machine bunch parameters
0.9 ms bunch train duration
6main accelerator physics challenges
- Develop High Gradient Superconducting RF systems
- Achieve nm scale beam spots
- Reach Luminosity Requirements
7main machine parameter decisions to be taken
Critical choices luminosity parameters gradient
8global plan (accelerator)
9main detector requirements
- Momentum resolution
- ?(1/p) 4 10-5
- magnetic field, point resolution, track length,
number of points, - low density
- Precise EM calorimetry Energy flow in jets
- Jet resolution ?E/E 30/vE
- through particle flow method in fine-grained
calorimeter - Efficient B-tagging
- precise vertex detector placed at low radius,
low density
10the SiD concept
- High field solenoid (5T)
- Vertex (small pixels, e.g. CCD), with timing
- Tracker silicon only, with timing (R1.3 m)
- ECAL SiW
- HCAL optional (Steel, W) with (scint, GEM, RPC)
with either analog or digital readout
11the SiD concept
vertex detector
tracker
12the LDC concept
- Solenoid (4T)
- Inner tracker pixels silicon
- TPC (200 pad rows, GEM or micromegas), R1.7 m
- ECAL SiW
- HCAL similar to SiD
13the LDC concept
vertextracking
vertical cut LDC
14the GDC concept
- Solenoid (3T)
- Inner tracker pixels silicon
- TPC (gt100 pad rows, GEM or micromegas), R2.1 m
- ECAL Scintillator W
- HCAL Scintillator - W
15the GLD concept
vertical cut GLD
16the 4th concept
- 2 air-coil Solenoids (2T)
- Vertex pixels (5 µm)
- TPC with silicon strips at inner and outer radii,
R1.4 m - Calorimeters triple readout fibres
(scintillation/cherencov/neutron) - Muon detection ATLAS drift tubes
17main RD activities
- Vertexing
- Small pixels, thin integrated detectors, low
power - ? MAPS, DEPFET, CCDs
- Trackers, silicon
- High resolution, low power (pulsed), low
material, time info - TPC
- Resolution 80 µm, high density readout, low
material, low power
18main RD activities
- ECAL/HCAL
- High granularity, small Rmol, high density,
excellent jet resolution (separation of
electromagnetic hadronic neutron components) - ? Silicon-tungsten RD
- ? Scintillator (tile/strip/fiber)
19ILC physics
- e,e- (gamma-gamma and e-gamma) interactions
- Electroweak precision measurements
- Higgs couplings, Higgs spin
- Electroweak symmetry breaking
- SUSY (precision parameters, LHC discovery)
- Extra dimensions, new theories
- Impacts on cosmology (e.g. dark matter)