Diseo de primers - PowerPoint PPT Presentation

1 / 53
About This Presentation
Title:

Diseo de primers

Description:

Se busca secuenciar el gen en cuesti n. Regiones conservadas en genes hom logos de organismos cercanos ... 5'-termini less stable 3'-termini, which eliminates ... – PowerPoint PPT presentation

Number of Views:173
Avg rating:3.0/5.0
Slides: 54
Provided by: Mir698
Category:

less

Transcript and Presenter's Notes

Title: Diseo de primers


1
Diseño de primers
2
Francis Crick
Alex Rich Leslie Orgel James
Watson
3
Escenarios frecuentes en el diseño de primers
  • Secuencia de DNA conocida
  • Diagnóstico, genotipificación
  • Tener cuidado si es DNA o cDNA
  • Secuencia de DNA desconocida
  • Se busca secuenciar el gen en cuestión
  • Regiones conservadas en genes homólogos de
    organismos cercanos
  • Extremos amino ó carboxilo terminal de la
    proteína codificada es conocida

4
Secuencia de DNA conocida
  • Los primers se diseñan a partir de criterios de
    optimalidad
  • Estabilidad térmica del complejo primer-DNA
  • Estructura secundaria
  • Dímeros
  • Temperatura media de fusión
  • Especificidad

5
(No Transcript)
6
PCR
1 copy
and - strands of template
forward primer
reverse primer
amplified DNA
5
3
3
5
2 copies
5
3
5
3
4 copies
etc.
8 copies
7
Ciclos deTemperatura
  • Temperatura de hibridación (annealing) (usual
    45-60?C) allows primers to hybridize to template
  • Temperatura de extensión (usually 72?C) allows
    polymerase to extend starting at the primer
  • Temperatura de denaturación (usually 95?C)
    separates strands

8
  • Tiempo de vida media de Taq polymerasa
  • aprox. 30 min a 95C,
  • Es lar razón por la que después de 30 ciclos de
    amplificación se pierde eficiencia
  • Es posible reducir la temperatura de
    denaturación luego de 10 ciclos de amplificación
    ya que la longitud media del DNA blanco se ha
    reducido cercanamente al tamaño del amplicón
    para templados de 300bp o menos, la temperatura
    de denaturación puede reducirse a valores tan
    bajos como 88C para un 50 de (GC) (Yap and
    McGee, 1991), por lo que es posible llegar hasta
    40 ciclos sin disminuir sustancialmente la
    eficiencia de la enzima.

9
Durante el PCR se da una liberación de
pirofosfato que juntamente con el producto van a
comportarse de manera inhibitoria
10
Considerations About Primers
Characteristics of primers
Thoughts on primer design
Uniqueness
Specificity Specific for the intended target
sequence (avoid nonspecific hybridization)
Length
Base Composition
Internal Stability
Stability Form stable duplex with template under
PCR conditions
Melting Temperature
Annealing Temperature
Internal Structure
Compatibility Primers used as a pair shall work
under the same PCR condition
Primer Pair Matching
11
Uniqueness
There shall be one and only one target site in
the template DNA where the primer binds, which
means the primer sequence shall be unique in the
template DNA. There shall be no annealing site in
possible contaminant sources, such as human, rat,
mouse, etc. (BLAST search against corresponding
genome)
Template DNA 5...TCAACTTAGCATGATCGGGTA...GTAGCAG
TTGACTGTACAACTCAGCAA...3
TGCTAAGTTG
CAGTCAACTGCTAC
NOT UNIQUE!
Primer candidate 1 5-TGCTAAGTTG-3
UNIQUE!
Primer candidate 2 5-CAGTCAACTGCTAC-3
12
Length
Primer length has effects on uniqueness and
melting/annealing temperature. Roughly speaking,
the longer the primer, the more chance that its
unique the longer the primer, the higher
melting/annealing temperature. Generally
speaking, the length of primer has to be at least
15 bases to ensure uniqueness. Usually, we pick
primers of 17-28 bases long. This range varies
based on if you can find unique primers with
appropriate annealing temperature within this
range.
13
Base Composition
  • Base composition affects hybridization
    specificity, melting/annealing temperature and
    internal stability.
  • Random base composition is preferred. We shall
    avoid long (AT) and (GC) rich region if
    possible.

Template DNA 5...TCAACTTAGCATGATCGGGCA...AAGATGC
ACGGGCCTGTACACAA...3
TGCCCGATCATGCT
  • Usually, average (GC) content around 50-60
    will give us the right melting/annealing
    temperature for ordinary PCR reactions, and will
    give appropriate hybridization stability.
    However, melting/annealing temperature and
    hybridization stability are affected by other
    factors, which well discuss later. Therefore,
    (GC) content is allowed to change.

14
Thermodynamics
  • Gibbs Free Energy, G
  • Describes the energetics of biomolecules in
    aqueous solution. The change in free energy, ?G,
    for a chemical process, such as nucleic acid
    folding, can be used to determine the direction
    of the process
  • ?G0 equilibrium
  • ?Ggt0 unfavorable process
  • ?Glt0 favorable process
  • Thus the natural tendency for biomolecules in
    solution is to minimize free energy of the entire
    system (biomolecules solvent).
  •  ?G ?H - T?S
  • ?H is enthalpy, ?S is entropy, and T is the
    temperature in Kelvin.
  • Molecular interactions, such as hydrogen bonds,
    van der Waals and electrostatic interactions
    contribute to the ?H term. ?S describes the
    change of order of the system.
  • Thus, both molecular interactions as well as the
    order of the system determine the direction of a
    chemical process.
  • For any nucleic acid solution, it is extremely
    difficult to calculate the free energy from first
    principle
  • Biophysical methods can be used to measure free
    energy changes

15
Internal Stability
Stability Profile Internal stability is
calculated with entropy values of neighbor
nucleotides. Usually, We draw a graph of ?G for
all nucleotides of the primers. This is known as
the stability profile.
16
3 Stability 5 Stability
Primer elongation starts at 3 end. Therefore, as
long as 3 end hybridizes to the template stably,
the elongation begins. 5 end sequence plays less
important role. This feature can be utilized for
modifying 5 end so that there will be a
restriction enzyme site. However, this feature
also brings out a problem if 3end of the
primer has 3 or more than 3 C/G, it can almost
bind stably to any site where there are 3
complement G/C bases.
Template DNA 5...TCAACTTAGCGTGATCGATTA...AAGATTC
GCGTTAGCTGTACACAA...3
5-AATCGATCTCGC-3
Ideal situation will be stable 5-termini less
stable 3-termini, which eliminates false priming
due to annealing of 3'-half of primer only. We
prefer the 5 end has 1 or two G/C bases (GC
clamp) and the 3 end has no more than 1 G/C base.
17
Melting Temperature
Melting Temperature, Tm the temperature at
which half the DNA strands are single stranded
and half are double-stranded.. Tm is
characteristics of the DNA composition Higher
GC content DNA has a higher Tm due to more H
bonds. Calculation Method 1 (Base Composition)
Tm ( A T ) ? 2?C ( C G ) ? 4?C
(lt20bp) Method 2 (Salt Adjusted) Used by GCG
and Primer3 Tm 81.5 16.6 ? log10Na
0.41 ? GC 0.65 ? formamide 675/length
mismatch Method 3 (Nearest Neighbor) Used by
OLIGO ?H / (10.8 ?S R ? ln (c / 4))
273.15 16.6(log10K) where ?H is the sum of
enthalpy of the nearest neighbors, ?S is the sum
of entropy of the nearest neighbors, c is the
molar concentration of primer, and R is the gas
constant (1.987). As you can tell from the
equation higher GC, higher Tm Higher probe,
higher Tm higher K, higher Tm Differences are
sometimes significant, like 8 degrees, and
sometimes trivial, like 0.1 degree. Try different
software to calculate Tm. Pick the common value.
18
Annealing Temperature
Annealing Temperature, Tanneal the temperature
at which primers anneal to the template DNA. It
can be calculated from Tm .
Tanneal Tm_primer 4?C or 0.3 ? Tm_primer
0.7 ? Tm_product 14.9 Where Tm_primer is the
melting temperature for primer and Tm_product is
the melting temperature for product.
To ensure that primers anneal to the template
before the two strands of template anneal to each
other, it required that the Tm_product Tanneal
30 ?C
19
Stringency in Primer Annealing
  • Stringency determines the specificity of the
    amplified DNA product. Tanneal is the most
    significant factor affecting the stringency in
    primer annealing.
  • Tanneal too low ? less stringent ? primer
    matches elsewhere
  • too high ? more stringent ? primer
    may fail to match
  • Other factors
  • GC GC pairs are more stringent than AT paris
  • Salt Buffer

20
Internal Structure
If primers can anneal to themselves, or anneal to
each other rather than anneal to the template,
the PCR efficiency will be decreased
dramatically. They shall be avoided.
However, sometimes these 2? structures are
harmless when the annealing temperature does not
allow them to take form. For example, some dimers
or hairpins form at 30 ?C while during PCR cycle,
the lowest temperature only drops to 60 ?C.
21
Primer Pair Matching
Primers work in pairs forward primer and
reverse primer. Since they are used in the same
PCR reaction, it shall be ensured that the PCR
condition is suitable for both of them. One
critical feature is their annealing temperatures,
which shall be compatible with each other. The
maximum difference allowed is 3 ?C. The closer
their Tanneal are, the better.
22
Calculation procedure for extinction (absorption)
coefficient of DNA Extinction coefficient at 260
nm, 25 degrees of Celsius, and neutral pH for the
single-strand DNA is determined by the
nearest-neighbor method
23
The following table contains extinction
coefficients l/(mmol.cm)

24
Summary when is a primer a primer?
5
3
5
3
5
3
3
5
25
Summary Primer Design Criteria
  • Uniqueness ensure correct priming site
  • Length 17-28 bases.This range varies
  • Base composition average (GC) content around
    50-60 avoid long (AT) and (GC) rich region
    if possible
  • Optimize base pairing its critical that the
    stability at 5 end be high and the stability at
    3 end be relatively low to minimize false
    priming.
  • Melting Tms between 55-80 ?C are preferred
  • Assure that primers at a set have annealing Tm
    within 2 3 ?C of each other.
  • Minimize internal secondary structure hairpins
    and dimmers shall be avoided.

26
Computer-Aided Primer Design
Primer design is an art when done by human
beings, and a far better done by machines. 
  • Some primer design programs we use
  • Oligo Life Science Software, standalone
    application
  • - GCG Accelrys, ICBR maintains the server.
  • Primer3 MIT, standalone / web application
  • http//www-genome.wi.mit.edu/cgi-bin/primer/pri
    mer3_www.cgi
  • BioTools BioTools, Inc. ICBR distributes the
    license.
  • Others GeneFisher, Primer!, Web Primer, NBI
    oligo program, etc.

Melting temperature calculation software -
BioMath http//www.promega.com/biomath/calc11.htm

27
Primer Design on the Web
  • There are a bunch of good PCR primer design
    programs on the web
  • Primer 3 at the MIT Whitehead Institute
  • http//www.genome.wi.mit.edu/cgi-bin/primer/primer
    3_www.cgi
  • Cassandra at the Univ. of Southern California
  • http//www-hto.usc.edu/software/procrustes/cassand
    ra/cass_frm.html
  • GeneFisher by Folker Meyer Chris Schleiermacher
    at Bielefeld University, Germany
  • http//bibiserv.TechFak.Uni-Bielefeld.DE/genefishe
    r/
  • Xprimer at the Virtual Genome Center, Univ.
    Minnesota Medical School
  • http//alces.med.umn.edu/rawprimer.html

28
Secuencia de DNA desconocida
  • Regiones conservadas en genes homólogos de
    organismos cercanos

29
  • gtgi175637971-1014 Caenorhabditis elegans
    essential CathePsin L (38.1 kD) (cpl-1), mRNA
  • ATGAACCGATTCATTCTTCTGGCACTGGTTGCCGCCGTCGTCGCCGTCAA
    TTCGGCCAAGCTGTCCCGTC
  • AAATCGAGTCGGCCATCGAGAAATGGGACGACTATAAGGAGGACTTTGAT
    AAGGAGTACTCGGAGAGCGA
  • GGAGCAGACCTATATGGAGGCATTTGTCAAGAATATGATCCATATTGAGA
    ATCACAACAGAGATCACCGA
  • CTCGGAAGAAAGACATTCGAGATGGGATTGAATCATATTGCTGACTTGCC
    ATTCAGCCAATACCGCAAAC
  • TCAACGGTTACAGACGTCTCTTCGGTGACTCCAGAATCAAGAACTCCTCC
    TCTTTCTTGGCTCCATTCAA
  • TGTTCAGGTCCCAGATGAGGTTGACTGGCGTGATACCCACCTCGTCACTG
    ATGTCAAGAACCAAGGAATG
  • TGCGGATCGTGCTGGGCCTTCTCCGCCACCGGAGCCCTCGAAGGACAACA
    CGCTCGCAAGCTGGGACAAC
  • TCGTCTCCCTTTCCGAGCAAAACCTCGTCGACTGCTCTACCAAGTACGGA
    AACCACGGATGCAACGGAGG
  • ACTCATGGATCAAGCTTTCGAGTACATTCGTGACAACCATGGTGTCGACA
    CCGAGGAGTCATACCCATAC
  • AAGGGACGTGACATGAAGTGTCACTTCAACAAGAAGACCGTCGGAGCTGA
    TGATAAGGGATACGTTGACA
  • CCCCAGAAGGAGATGAGGAGCAACTTAAGATCGCTGTCGCCACCCAAGGA
    CCAATCTCTATTGCTATCGA
  • CGCCGGACACCGCAGCTTCCAACTTTACAAGAAGGGAGTCTACTACGATG
    AGGAATGCTCATCCGAAGAG
  • CTCGACCACGGAGTGCTTCTCGTCGGATACGGAACCGACCCAGAGCACGG
    AGACTACTGGATTGTCAAGA
  • ACTCGTGGGGAGCTGGATGGGGAGAGAAGGGATACATCCGTATCGCCCGT
    AACCGCAACAATCACTGCGG
  • AGTCGCCACCAAGGCCAGTTATCCATTGGTCTAA

30
  • gtgi2518814970-1131 Brugia malayi mRNA for
    cathepsin L-like cysteine proteinase, complete
    cds
  • ATGAAGGCGTTTTTTATTCTACATTTAGCCAGTTTTCTCTTGCTTACTTA
    TGCAAATCCACTTAATGAAC
  • TGGATAATGATGACACACCAGGTAAAATTCATACCTTGTATCAGCAGCAT
    TATTCGAAGTATAAAACATA
  • TCTGAAAAAAATGGGCAAAAAACATGATCCATCTGTTCCGGAACCAATTC
    GATTACTTAAATTTGTACAA
  • TCTTTGAAAATGATTGATGAACATAACCAGCGTTACAGTAAAGGATTGGA
    AACATACAAAGTAGATCTGA
  • ACAAAATGAGCGATTGGACCGAAGAAGAGAAAGAAAGACTTCGGGGATAT
    TATCCAAATTTGACTGAATA
  • TGCGGAAGGAGATTTAAGTAGAATAATCCGAGGAAATATAACAACAACAA
    TACCAAAGTCTTTTGATTAT
  • AGAAAGAAAATAACTGTACTACCAGCATCAGATCAAGGTCGTTGTGGTGT
    GTGTTTTATTTTCTCAGCAT
  • TAGGAGCGCTTGAAATGTATGTGGCGCTCAGGACTAAAAAACGGCCGGTA
    AAACTATCAGTACAGGATGT
  • AATGGATTGTAGTGGAATGGAAAAATGCAAAGGAAGAGGCGGAAATGAAC
    CTGCGGTTTTTCGTTGGGTT
  • GCTGAGCACGGTGTAAAGACCGATAAGAGTTACCCATATAAGGAAAATGA
    TAGTGTTTCATGCCCGAGAA
  • ATACCCCACAACGACGAAAGTATGGTTTAGCTGATGCATTCTATTTACCT
    CCTAGCAATGAACAAATTCT
  • CAAGAAGATACTAGCACTATATGGACCAGTTTGTGTATCGTTACATTCGT
    CATTACAAAGTTTTGTAGCT
  • TATCGAAGTGGTATTTATAATGATCCAAAATGTCCAACTAATGCAGAAAA
    AGTAAATCATGCGGTAATAG
  • CGGTTGGTTATGGTGTCCAGAATGGGATGGAATATTTTATCATCAAAAAC
    AGTTGGGGCCCTACATGGGG
  • TCAAAAAGGATACGGTCGTATTCGCGCTGGGGTATTTATGTGCGGTATTG
    GTCGTTTTTCGAACGTACCA
  • ATCTTCAAATGA

31
  • gtgi214896764-1068 Haemonchus contortus
    cathepsin L cysteine protease (cpl-1) mRNA,
    complete cds
  • ATGCTACGTCTGTTGTCGTTGGCGCTTCTATGCGCTGTAGTTTTAGCTAG
    TATTGATGGGTTCAGAAGGC
  • ATGATCATGGCGTACGAGTGCACAGACAGAAAAGCCTTCGCCAAAAAATC
    GACGAGGCTTTCAATAAATG
  • GGATGACTACAAGGAGACCTTTGGAAAGTCGTATGAACCGGATGAAGAGA
    ACGACTACATGGAGGCCTTT
  • GTGAAGAACGTGATTCACATTGAGGAACACAATAAGGAACACCGTCTTGG
    TAGGAAAACATTTGAAATGG
  • GTCTCAACGAAATTGCTGATTTGCCATTCTCACAATATCGAAAACTCAAC
    GGGTATCGTATGCGTCGTCA
  • ATTTGGCGATTCCTTGCAGTCCAATGGTACCAAGTTTTTGGTTCCATTCA
    ATGTTCAGATCCCGGAATCT
  • GTTGACTGGCGAGAGGAAGGACTTGTGACTCCAGTAAAGAATCAAGGAAT
    GTGTGGATCATGTTGGGCGT
  • TCTCCTCTACTGGTGCTCTAGAAGGACAACATGCACGTGCCACTGGCAAG
    CTGGTATCCCTTTCCGAGCA
  • AAATCTTGTCGATTGCTCAACGAAGTACGGAAACCATGGCTGCAACGGTG
    GTCTTATGGATTTGGCATTT
  • GAATATATCAAGGAAAATCACGGTGTCGATACCGAAGATAGTTATCCATA
    CGTCGGAAGAGAAACGAAAT
  • GTCATTTCAAGAGGAACGCTGTTGGAGCCGATGACAAGGGCTTTGTAGAT
    CTTCCTGAAGGCGATGAAGA
  • GGCGTTGAAGAAAGCAGTTGCCACTCAAGGTCCAATTTCTATCGCTATTG
    ACGCTGGTCACAGGTCATTC
  • CAGCTGTACAAGAAGGGAGTGTACTTTGACGAAGAGTGCTCGTCTGAAGA
    ACTGGATCACGGTGTTCTTC
  • TCGTTGGATACGGTACTGATCCCGAGGCAGGAGATTATTGGCTTGTGAAG
    AACAGCTGGGGACCGACTTG
  • GGGAGAGAAGGGATACATTCGCATTGCCCGTAACCGCAACAATCACTGCG
    GTGTTGCAACAAAGGCCAGC
  • TACCCGCTCGTTTAG

32
  • gt(gi21483189lt1-53, 1121-1209, 1586-1725,
    1806-1910, 2049-2183, 2239-2385, 2448-2537,
    2616-2691, 2999-3107, 3188-3287) Dictyocaulus
    viviparus cathepsin L (cpl-1) gene, partial cds
  • TTGCTTCTGTTCCTATGCGATTTAGCTTCAACTAAGATCGGTACACCTAG
    AAAGCACGGATTTTATTCGG
  • AGAAACAGAAAAGTCTACGTCAGAGGATCGATGAGGCCTTTGGAAAATGG
    GATGAGTATAAGATCAAATA
  • TGATAAACACTATGACCCTGAAGAAGAAAATGATTATATGGAGGCTTTTG
    TAAAAAACATGATCCACATC
  • GAGGAGCATAATCATGAACACCGCTTGGGGCGAAAAACTTTCGAAATGGG
    ATTGAACAATATCGCTGATC
  • TTCCTTTCTCGGAGTACCGCAAATTGAACGGTTACCGCCATCGTCGCTTA
    TTTGGTGACTCTATGCGTAA
  • AAATGGCACGAAATTTTTAGTCCCTTTCAATGTCAAGGCGCCGGATTCAG
    TAGATTGGCGAGAACATAAT
  • CTCGTTACTCCAGTAAAAAATCAAGGGATGTGTGGTTCCTGTTGGGCCTT
    CTCCGCAACTGGAGCTCTCG
  • AAGGACAACATTTTCGTGCAACCGGAAAACTTGTTTCCTTGTCCGAACAG
    AATCTGGTGGATTGTTCTAC
  • TAAATATGGAAACCATGGTTGTAACGGTGGTCTCATGGATTTGGCATTTG
    AATACATAAAAGATAATCAT
  • GGTATAGATACTGAGGAGGGTTACCCTTATGTTGGCAAAGAGATGAGGTG
    CCACTTCAAAAAGAGGGACA
  • TTGGAGCTGAAGATAGGGGGTTTGTAGATCTTCCAGAAGGAGACGAAGAT
    GCCTTGAAGGTCGCTGTCGC
  • TACTCAGGGTCCTATTTCTATTGCCATTGATGCCGGTCATCGGTCTTTCC
    AGTTATATAAAAAAGGAGTT
  • TATTTTGACGAGGAGTGTTCATCCGAAGAACTTGATCATGGAGTTCTTCT
    TGTGGGTTATGGCACTGATC
  • CTGAAGCTGGCGACTACTGGATCATAAAGAATAGTTGGGGAACTAAATGG
    GGAGAAAAGGGTTACGTTCG
  • TATCGCTCGGAATCGCAACAATCACTGCGGTGTGGCAACGAAGGCGAGTT
    ATCCGCTCGTCTAA

33
(No Transcript)
34
Universal Primers
  • Primers can be designed to amplify only one
    product.
  • Primers can also be designed to amplify multiple
    products. We call such primers universal
    primers. For example, design primers to amplify
    all HPV genes.
  • Strategy
  • Align groups of sequences you want to amplify.
  • Find the most conservative regions at 5 end and
    at 3 end.
  • Design forward primer at the 5 conservative
    region.
  • Design reverse primer at the 3 conservative
    regions.
  • Matching forward and reverse primers to find the
    best pair.
  • Ensure uniqueness in all template sequences.
  • Ensure uniqueness in possible contaminant sources.

35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
Nucleic-acid Base Codes
Adapted from Mount, Bioinformatics Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY
(2001)
41
  • Catep1w 5'KTG YGG WKY VTG YTK KRY BTT CTC3'
  • Catep2w 5'GTA WCC YTT YTS DCC CCA 3'
  • Estos primers son las secuencias degeneradas de
    alinear los nematodes disponibles C.elegans,
    Brugian, Haemonchus, Dyctiocaulus

42
Secuencia de DNA desconocida
  • Extremos amino ó carboxilo terminal de la
    proteína codificada es conocida

43
  • P F T K
  • CCn TTy ACn AAr
  • Donde
  • n A,C,G or Ty C,Tr A,G

44
(No Transcript)
45
(No Transcript)
46
Our Focus the Helix-Coil Transition in DNA
  • In particular, we focus on two related processes
  • DNA melting
  • B helix to two coils.
  • DNA annealing
  • two coils to a B helix.
  • Understanding these
  • aids in modeling more complicated transitions.
  • e.g., many species.

47
Stabilizing Interactions
  • DNA B-Helix structure stabilized by
  • hydrogen bonding between bases (minor).
  • stacking between H-bonded
  • base-pairs (primary).
  • induced dipole moments in the p clouds of
    adjacent heterocyclic rings.
  • stacking also sequesters hydrophobic rings.
  • results in the characteristic helix shape.
  • In DNA meltingthe helix destabilized
  • generally implemented by increasing temperature,
    T.
  • destabilizes the stacksunwinding the helix.
  • unwound helix separates into free ssDNAs
    (coils).

48
Monitoring the Helix-Coil Transition
  • Degree of stacking experimentally observable
  • Let QB mean fraction of stacked base pairs.
  • Ultraviolet absorbance at 260 nm (A260)
  • inversely proportional to QB.
  • the hypochromicity.
  • DNA melting accompanied by _at_ 40 increase A260.
  • A260 vs. T yields QB vs. T (melting curve).

49
DNA Melting Curves
  • QB decreases monotonically from 1 to 0.
  • sigmoidal shape indicates DNA melting is
    cooperative.
  • Temp. at which QB ½ is the Melting temperature
    (Tm)
  • Width (DT) is non-zero (e.g., for 10-mers, DT _at_
    10 oC).
  • Melting curves of longer DNAs show more
    structure
  • several independently melting regions (ATs less
    stable).
  • melting curve then a combination of several
    sigmoids.

50
DNA Renaturation
  • Renaturation is the reverse of DNA melting.
  • also called DNA annealing or hybridization.
  • DNA renaturation is a much more complicated
    process

51
DNA reassociation (renaturation)
Double-stranded DNA
Denatured, single-stranded DNA
Faster, zippering reaction to form
long molecules of double- stranded DNA
k2
Slower, rate-limiting, second-order process
of finding complementary sequences to
nucleate base-pairing
http//www3.kumc.edu/jcalvet/PowerPoint/bioc801b.p
pt
52
(No Transcript)
53
Reversibility of DNA Melting
  • Melting for short DNAs strictly reversible.
  • Reversibility of DNA melting
  • measured by a lack of hysteresis in the melting
    curve.
  • DNA melting curve DNA renaturation curve.
  • Validity of an equilibrium model of melting
    assumes
  • melting slow enough to maintain equilibrium at
    each T.
  • relatively slow heating/cooling
    (0.1-0.2oC/minute).
  • failure to maintain equilibrium hysteresis in
    the melting curve.
Write a Comment
User Comments (0)
About PowerShow.com