Machine Translation - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Machine Translation

Description:

FRENCH Comme je l'ai dit tout l'heure, ma circonscription est tr s diversifi e. ... FRENCH ... FRENCH /PAIR 6/24/09. 15. Inducing Bilingual Lexicon ... – PowerPoint PPT presentation

Number of Views:136
Avg rating:3.0/5.0
Slides: 31
Provided by: barbara86
Category:

less

Transcript and Presenter's Notes

Title: Machine Translation


1
Machine Translation
  • Dekang Lin
  • Department of Computing Science
  • University of Alberta

2
Overview
  • Approaches
  • Sentence Alignment
  • Word Alignment

3
Bitext
  • Bitexts same contents in two languages
  • Canadian parliamentary proceedings
  • Hong Kong Hansards
  • The Bible (parallel texts)

4
Different Approached to Text Alignment
  • Length-Based Approaches
  • short sentences will be translated as short
    sentences and long sentences as long sentences.
  • Lexical Methods
  • Use lexical information to align beads of
    sentences.

5
Length-Based Methods
  • Goal
  • Find alignment A with highest probability given
    the two parallel texts S and T
    arg maxA P(AS, T)argmaxA P(A, S, T)
  • Assumption
  • Each bead is independent of the others.
  • P(A, S, T) ? ?k P(Bk).

6
Probability Estimation
  • How to estimate the probability of a certain type
    of alignment bead given the sentences in that
    bead.
  • The length-based alignment algorithm ignores
    everything else except the lengths (in terms of
    characters or words) of sentences.

7
  • ?the average ratio between the lengths of
    sentence in L1 and L2.
  • ? can be estimated by the ratio between the
    document length, since the majority of the
    sentences are 1 to 1.
  • German/ English ?1.1
  • French/ English ?1.06
  • Gale and Church 93 used ?1 for all language
    pairs

8
  • s the standard deviation of the ratios of the
    lengths of corresponding sentences in L1 and L2.
  • The squares of the differences of the lengths of
    paragraphs can be used to estimate s2.
  • English-German s27.3
  • English-French s2 5.6
  • Gale and Church 93 used s2 6.8 for all
    language pairs

9
  • Define ? as
  • ? is a random variable with expected value being
    0 and standard deviation being 1
  • P(match, ?) P(?match)P(match)
  • P(match) is estimated from manually annotated
    data

10
  • P(?match) is computed as 2(1-P(?))
  • where
  • P(?) can be approximated
  • d ?
  • t1/(10.2316419 d
  • pd 1-0.3989423exp(-dd/2)((((1.330274429t-1.8
    21255978)t1.781477937)t-0.356563782)t0.319338
    1530)t

11
Dynamic Programming
12
Length-Based Methods
  • The algorithm uses a Dynamic Programming
    technique that allows the system to efficiently
    consider all possible alignments and find the
    minimum cost alignment.
  • The method performs well (at least on related
    languages). It gets a 4 error rate. It works
    best on 11 alignments only 2 error rate. It
    has a high error rate on more difficult
    alignments.

13
Word Alignment
  • Input
  • Pairs of sentences in two different languages
  • Goal
  • determine the translation of each word

14
ltPAIRgt ltENGLISHgt I am very pleased to see that
happening. lt/ENGLISHgt ltFRENCHgt Je suis très
heureux que cela se produise. lt/FRENCHgt lt/PAIRgt
ltPAIRgt ltENGLISHgt As I mentioned earlier, my
riding is very diverse. lt/ENGLISHgt ltFRENCHgt Comme
je l'ai dit tout à l'heure, ma circonscription
est très diversifiée. lt/FRENCHgt lt/PAIRgt
ltPAIRgt ltENGLISHgt Dauphin-Swan River is located in
west central Manitoba, the second largest settled
area riding. lt/ENGLISHgt ltFRENCHgt La
circonscription est située au centre ouest du
Manitoba et vient au deuxième rang quant à sa
superficie habitée. lt/FRENCHgt lt/PAIRgt
15
Inducing Bilingual Lexicon
  • Input a sequence of paired sentences, each is
    assigned a unique identifyer
  • Construct a feature vector for each word
  • the features of the word are the sentences it
    appears in
  • Compute the similarity between English and French
    words according to the cosine of their respective
    mutual information vectors.

16
E_I occ S0 1 E_I occ S1 1 E_in occ S2 1 E_la
rge occ S2 1 E_locate occ S2 1 E_Manitoba occ
S2 1 E_mention occ S1 1 E_my occ S1 1 E_plea
sed occ S0 1 E_rid occ S2 1 E_riding occ S1
1
F_centre occ S2 1 F_circonscription occ S1 1 F
_circonscription occ S2 1 F_Comme occ S1 1 F_d
euxième occ S2 1 F_dit occ S1 1 F_diversifiée
occ S1 1 F_du occ S2 1 F_est occ S1 1 F_est
occ S2 1 F_et occ S2 1 F_habitée occ S2 1 F_
heure occ S1 1 F_heureux occ S0 1 F_Je occ S
0 1 F_Je occ S1 1
17
(E_I (desc 24949.3) (sims F_Je 0.66442 F_que 0.324
093 F_à 0.270347 F_j 0.269776 F_' 0.238522 F_d 0.2
25402 )) (E_riding (desc 27361.9)
(sims F_circonscription 0.565143 F_comté 0.315204
F_circonscriptions 0.23595 F_ma 0.15598 F_comtés 0
.155452 F_électeurs 0.0848727 F_pétition 0.071375
F_signée 0.0593435 F_représente 0.0576735 F_située
0.054995 F_transitoire 0.0474934 ))
(E_my (desc 26117.7) (sims F_mon 0.318009 F_ma 0.3
01029 F_Monsieur 0.173827 F_mes 0.171226 F_questio
n 0.171068 F_j 0.159929 F_Je 0.153954 F_président
0.13523 F_Adresse 0.12909 F_ai 0.122849 F_collègue
0.117225 F_s 0.10922 F_ministre 0.0981145 F_au 0.
0878793 ))
18
Dealing with Large Bitext
  • Frequent words may appear in hundreds of
    thousands of sentences.
  • Uses too much memory
  • Slow down similarity computation
  • Solution
  • only use the first K (K10000) occurrences of a
    word

19
Homomorphic Dependency Hypothesis
  • Let S and T be translation of each other. The
    dependency structure of S and T are homomorphic.

20
First I congratulate you on your re - election to
the Chair 0 1 2 3 4 5 6 7
8 9 10 11 ---------------------------
------------------- Je tiens à vous féliciter
pour votre réélection à la présidence 1
3 2 5 8(2 0) 11
I suggest they were saying four things 0 1
2 3 4 5 6
---------------------------------------------- À
mon avis , leur message est quadruple 0 1
2 4 3 5
21
(No Transcript)
22
(No Transcript)
23
... regional interests are expressed in their
federal 16 17 18 19 20
21 22 arenas through an effective upper
chamber 23 24 25 26 27 28
---------------------------------------------- .
.. une Chambre haute efficace défend 25 28
27 26 19 les intérêts régionaux
sur la scène fédérale 17 16
23 22 We see ourselves as having a
twofold mandate 0 1 2 3 4 5 6
7 -------------------------------------
--------- Nous considérons avoir un mandat à deux
volets 0 1 4 5 7 6 6

24
Constraint on Alignment
  • The dependency structure of the source language
    sentence can be used to derive a dependency
    structure in the target language sentence.
  • Dependency structures normally do not have
    crossing links
  • Constraint on Alignment
  • the derived dependency structure of the target
    language sentence must not have crossing links

25
(No Transcript)
26
Checking for Crossing Links
  • There are many possible alignments
  • The check for crossing links should be done while
    the alignment is being constructed, instead of
    when it is finished.
  • reduce the search space

27
Problem 1
  • Before the alignment is complete, some dependency
    links in T cannot be established. Can we apply
    the non-crossing constraint nonetheless?

28
Problem 2
  • Some of the dependency link in T corresponds to a
    path in S. Does that mean we have to check all
    the paths?

29
Implicitly Checking for Crossings
  • the distance from a node A to node B in a
    dependency tree is defined as the minimum number
    of levels above A so that A and B are under the
    same subtree.

30
  • If a dependency tree does not contain crossing
    links, the distances relative to a node should be
    monotonic on both side of the node.
  • When the distances are mapped to T, the
    monotonicity should be preserved.
Write a Comment
User Comments (0)
About PowerShow.com