Part III Physics: Medical Physics Option Magnetic Resonance Imaging - PowerPoint PPT Presentation

1 / 176
About This Presentation
Title:

Part III Physics: Medical Physics Option Magnetic Resonance Imaging

Description:

One pulse and Two pulse experiments. Hardware ... Imaging pulse sequences. contrast. examples ... Effect of 180o RF pulses: B1 (rf) y' y' x' x' Basic Spin Echo ... – PowerPoint PPT presentation

Number of Views:366
Avg rating:3.0/5.0
Slides: 177
Provided by: HuangCa
Category:

less

Transcript and Presenter's Notes

Title: Part III Physics: Medical Physics Option Magnetic Resonance Imaging


1
Part III Physics Medical Physics
OptionMagnetic Resonance Imaging
  • Dr T A Carpenter
  • http//www.wbic.cam.ac.uk/tac12

2
Lecture Content
  • Lecture I
  • Overview of Nuclear Magnetic Resonance
  • Excitation and Signal detection
  • One pulse and Two pulse experiments
  • Hardware

3
Lecture Content
  • Lecture II
  • How does NMR become MRI
  • Effects of Magnetic Field Gradients
  • Imaging pulse sequences
  • contrast
  • examples

4
Useful Web Sites
Rochester Institute http//www.cis.rit.edu/htbook
s/mri/mri-main.htm
5
(No Transcript)
6
PD- T2 weighted with full coverage
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins gt360
acquired this year Work horse scan for
screening Could contrast, better deep grey
matter than FSE at 1.5T
7
PD- T2 weighted - Pituitary Tumour
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins
8
PD- T2 weighted - Glioma
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins
9
(No Transcript)
10
(No Transcript)
11
NMR History
  • 1921 Compton electron spin
  • 1924 Pauli Proposes nuclear spin
  • 1946 Stanford/Harvard group detect first NMR
    signal
  • mid -50 to mid 70s NMR become powerful tool for
    structural analysis
  • mid-70 first superconducting magnets

12
NMR History
  • 1976 Lauterbur First NMR image of sample tubes
    in a chemical spectrometer
  • 1981 First commercial scanners lt0.2T
  • 1985 1.5T scanner
  • 1986 Rapid developments in SNR, resolution
    etc
  • 1998 Whole body 8T at OSU

13
Nuclear Zeeman Effect
Application of strong magnetic field B0 lifts
degeneracy of nuclear spin levels
DE
For spin 1/2 DE g h B0 g Gyromagnetic
ratio (constant of nucleus) For hydrogen g 42.5
Mhz/T
14
Population Difference
Given by Boltzman Statistics na exp(
-ghBo/kT ) nb population difference is small lt1
in 106 NMR is very insensitive
15
Semi-Classical Model
Gyroscopic motion of magnetic moment about B0
B0
m
Use classical mechanics(Larmor) w0 - g B0
16
Ensemble Average
M
17
Rotating Frame
Consider precessing moment in a frame of
reference rotating at the larmor frequency around
B0
w gBo
y
Y
X
x
18
Rotating Frame
Classical treatment of M
Effect of RF in laboratory Frame
Y
Equivalent to sinusoidal Brf
X
19
Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
20
Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
21
Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
22
Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
23
Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
24
Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
25
Rotating Frame
Classical treatment of M
B0
Effect of RF in rotating Frame
Y
X
X
Y
Brf
26
Signal Detection
rotating Frame
B0
X
X
Y
Y
27
Fourier Transformation
FT
Sampling frequency 2 expected frequency spread
(Nyquist)
28
Effect of RF pulses
B0
z
z
90o degree pulse
x
x
B1 (rf)
y
y
29
Effect of RF pulses
B0
z
z
90o degree pulse
x
x
B1 (rf)
y
y
30
Effect of RF pulses
B0
z
z
180o pulse (inverting pulse)
x
x
B1 (rf)
y
y
31
Effect of RF pulses
B0
z
z
180o pulse (inverting pulse)
x
x
B1 (rf)
y
y
32
Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
33
Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
34
Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
35
Effect of 180o RF pulses
B0
z
z
180o degree pulse
x
x
B1 (rf)
y
y
36
Effect of 180o RF pulses
x
x
B1 (rf)
y
y
37
Effect of 180o RF pulses
x
x
B1 (rf)
y
y
38
Effect of 180o RF pulses
x
x
B1 (rf)
y
y
39
Effect of 180o RF pulses
x
x
B1 (rf)
y
y
40
Effect of 180o RF pulses
x
x
y
y
x
x
y
y
41
Effect of 180o RF pulses
x
x
y
y
x
x
y
y
42
Two Pulse sequences (I) 90? 90 Saturation
recovery
Two Pulse sequences (I) 180? 90 Inversion
recovery
43
T1 Spin Lattice Relaxation Time
  • Describes the return to equilibrium for spins
    from the excited state
  • Spins loose heat to the rest of the world
  • Requires fluctuating magnetic field near the
    Larmor frequency for an effective transfer of
    energy from a spin to surrounding lattice

44
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
45
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
46
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
47
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
48
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
49
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
50
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
51
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
52
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
53
Two Pulse sequences (II) 90? 180 ? Spin
Echo sequence
x
y
54
T2 and T2
55
Spin-Spin Relaxation Time
  • Static inhomogeneities refocussed by 180 pulse
  • Time varying imhomogeneity are not
  • T2 changes in disease give rise to diagnostic
    value of MRI

56
Bloch Equations
57
Superconducting Magnet
Helium vessel containing super-con coil
Vacuum
58
Superconducting Magnet
59
Shimming
60
Other Magnet Types
Permanent magnet, e.g. light weight rare earth
magnets, lt0.3T
61
Other Magnet Types
62
Other Magnet Types
Electromagnet lt0.3T
63
Special Superconducting Magnets
  • Active Shielding
  • Extra coils reduce stray field
  • Improves siting

12
4
10
0.5T wholebody
3T AS wholebody
2
5mT contour
64
RF Coils
Remember Brf must be ? B0
Field is ? subject, can use solenoid.
65
RF Coils
Remember Brf must be ? B0
Saddle coil, Brf is ? coil access. Efficiency
is low, and homogeneity is poor
Field is ? subject, cannot use solenoid.
66
(No Transcript)
67
Lecture Content
  • Lecture II
  • How does NMR become MRI
  • Effects of Magnetic Field Gradients
  • Imaging pulse sequences
  • contrast
  • examples

68
How to Make Images
Impose (separately)
dBzdx
dBzdy
dBzdz
X gradient Gx
Y gradient Gy
Z gradient Gz
Typical values are 10-100 mT/m
69
How to make images
For a Z gradient
wz -g(B0 Gz.z)
-hz
hz
70
How to make images
71
Imaging Gradients
  • Special coils (together with power supplies)
    provide linear variation in B0 in X, Y and Z
    directions

Z
B0
Z
72
Imaging Gradients
  • Special coils (together with power supplies)
    provide linear variation in B0 in X, Y and Z
    directions

X,Y
73
Selection of Slice
Use Fourier relationship
74
Selection of slice
Slice thickness adjusted by changing gradient
strength or slice bandwidth (longer pulse has
narrower frequency spread) Slice position
adjusted by changing the centre frequency of the
pulse
75
k-space
  • k-space is the raw data space before fourier
    transformation into the image
  • 2D image will be represented by a 2D array of
    data points spread throughout k-space
  • Differing the k-space trajectory will alter image
    contrast

76
Image vs k-space
?(r)
S(k)
k(t) ?/2??G(t)dt
77
Image vs k-space
?(r)
S(k)
78
Image vs k-space
?(r)
S(k)
79
Image vs k-space
?(r)
S(k)
80
Image vs k-space
FT
?(r)
S(k)
81
Information in k-space
82
GE k-space trajectory
RF
G
S
G
R
G
P
S(t)
?(r)
S(k)
83
GE k-space trajectory
RF
G
S
G
R
G
P
S(t)
-kr
kr
?(r)
S(k)
84
GE k-space trajectory
RF
G
S
G
R
G
P
S(t)
-kr
kr
?(r)
S(k)
85
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
86
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
87
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
88
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
89
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
90
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
91
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
92
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
93
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
94
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
95
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
96
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
97
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
98
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
99
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
100
GE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
101
SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
102
SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
103
SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
104
SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
105
SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
106
SE k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
107
Definitions
TR
RF
G
S
G
R
G
P
S(t)
108
Definitions
TE
RF
G
S
G
R
G
P
S(t)
109
Controlling contrast
110
Proton Density
TR
111
T2 Contrast
TR
112
PD- T2 weighted with full coverage
TR 6055, TEeff 20 120, ETL 10, 512x240,
35.84 x 16.8. 27 5mm slices. Scan time 5mins gt360
acquired this year Work horse scan for
screening Could contrast, better deep grey
matter than FSE at 1.5T
113
T1 Contrast
114
Alzheimers
115
T2 Contrast
116
T2 and T2 of acute head injury
117
Effect of Flip angle a
B0
X
Y
Brf
118
Effect of Flip angle a
90o pulse Maximum signal but have to wait 5T1 for
recovery
B0
X
Y
Brf
119
Effect of Flip angle a
B0
X
Y
Brf
120
Effect of Flip angle a
Flip angle 30o detect M0sin a 0.5 M0 remaining
M0cos a 0.87 M0
B0
X
Y
Brf
121
Contrast versus ?
Contrast versus TR
TR/TE/?
122
Why does MRI take so long
  • Answer
  • Only one phase encode line acquired per
    excitation
  • Spin Echo 2563s for T2, 2560.6s for T1
  • Gradient Echo 25635ms (but have to do 3D
  • Solution
  • get more phase encode lines per excitation

123
RARE/FSE/TurboSE
Pulse sequence
Multiple spin echos
RF
G
slice
G
1
G
2
Rx
124
RARE k-space trajectory
kp
-kp
-kr
kr
125
RARE k-space trajectory
kp
-kp
-kr
kr
126
RARE k-space trajectory
kp
-kp
-kr
kr
127
RARE k-space trajectory
kp
-kp
-kr
kr
128
RARE k-space trajectory
kp
-kp
-kr
kr
129
RARE k-space trajectory
kp
-kp
-kr
kr
130
RARE k-space trajectory
kp
-kp
-kr
kr
131
Echo Planar Imaging
  • Fastest imaging method
  • Typical AQ time is 30-100ms
  • Low RF deposition
  • Very fast gradient switching
  • Highly demanding on MRI hardware
  • B0 homogeneity
  • gradient switching

132
Why ?
  • freeze involuntary patient motion
  • visualization of dynamic process
  • fast imaging minutes
  • turbo imaging seconds
  • More complex MRI experiments
  • obtain multiple images vary some parameter e.g.
    TI
  • reduce patient examination time

133
GE-PEI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
134
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
135
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
136
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
137
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
138
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
139
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
140
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
141
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
?(r)
S(k)
142
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
S(k)
143
GE EPI k-space trajectory
kp
RF
G
S
G
R
G
P
S(t)
-kp
-kr
kr
S(k)
144
GE vs EP Imaging
Assume FOV 25cm AQ 10ms Matrix 256
time/sample 10-2/256 Bandwidth 25kHz
Gread 25 x 103/0.25 100 000Hz/m
2.5 mT/m
145
GE vs EP Imaging
Assume FOV 25cm AQ 0.5ms Matrix 128
time/sample 5x10-4/128 Bandwidth 250kHz
Gread 250 x 103/0.25 1 000
000Hz/m 25 mT/m
146
MRI at 3T
128x128 single shot, GE echo planar. X,Y,Z shim
only (30s) No template or navigator
correction Straight FFT after row reversal
147
fMRI (functional MRI)
Monitor T2 or T2 contrast during cognitive
task eg acquire 20-30 slices every 4
seconds Design experiment to have alternating
blocks of task and control condition Look for
statistically significant signal intenisty
changes correlated with task blocks
148
(No Transcript)
149
Resting
O2 glucose
oxyhaemoglobin
deoxyhaemoglobin
150
Activated
ATP
ADP
O2 glucose
O2
Blood flow
over-compensation
BOLD signal
151
Effect of Intravascular Oxygenation level
T2 (and T2) reduced because of diffusion
through field gradients
deoxy
oxy
Blood vessel
Paramagnetic
Diamagnetic
152
T2 curves activated and rest
resting
activated
oxyhaemoglobin
deoxyhaemoglobin
153
Unilateral Finger Opposition (high res)
154
Definitions
  • Diffusion relates to the microscopic Brownian
    thermal motion of molecules
  • Perfusion, classically is defined as that
    process that results in the delivery of nutrients
    to cells, normally expressed as ml/min/100g wet
    weight of tissue

155
Effect of Diffusion on NMR
  • Rms. of an ensemble is zero
  • For a single molecule diffusion results in a
    gaussian distribution of displacements

r
156
Diffusion and Spin echoes
d
d
D
157
Diffusion and Spin echoes
I/I0 e -bD b g2g2d2(D-d/3)
158
D and ADC
I/I0 e -bD b g2g2d2(D-d/3)
Log (I/I0)
H2O 2.1 x 10 -3 mm2s-1 DMSO 0.55 x 10 -3
mm2s-1 normal 0.71 x 10 -3 mm2s-1 ischaemic
0.55 x 10 -3 mm2s-1
b
159
Diffusion Weighted Imaging
RF
Gs
Gr
Gp
160
Diffusion Weighted Imaging
161
d
d
D
Typical Values ? 20, ? 50
Log (I/I0)
b
162
Practical Problems in Human DWI
  • Gross Motion
  • Head motion
  • breathing
  • Pulsitility
  • CSF/brain pulsation
  • Anisotropy
  • D is direction dependant, especially white matter

163
Practical Problems in Human DWI
  • Gross Motion
  • Echo Planar Imaging
  • navigator echoes
  • Pulsitility
  • gating plus navigator echoes
  • Anisotropy
  • Measure trace, Dxx Dyy Dzz
  • Measure full tensor (all matrix elements)

164
Diffusion Weighted EPI (b1570 s/mm2)
READ
PHASE
SLICE
FOV 25cm, TE 118ms TY DW-EPI 128x128
interpolated to 256x256 Partial k-acquisition
(62.5) 4 interleaves, d 28ms D 66 ms
165
Diffusion Weighted EPI (b1570 s/mm2)
166
Diffusion Weighted EPI (b1570 s/mm2)
167
MRI and O15 water PET
168
(No Transcript)
169
Effect of Intravascular Gd
Tissue
Blood vessel
Tissue
170
Effect of Intravascular Gd
T2 (and T2) reduced because of difussion
through field gradients
Tissue
Blood vessel
Tissue
171
(No Transcript)
172
Data Analysis
  • Fit first pass of the bolus (avoid recirculation)
  • Gamma variate, or (better) Monte Carlo
  • Estimate arterial input function from large
    vessel signal
  • rrCBV, rrCBF but absolute MTT

173
T2 weighted FSE images (3555/80/4)
rrCBV-map
map of the bolus delay (MTT image)
Perfusion weighted MRI of a patient with a high
grade stenosis (gt90) of the right internal
carotid artery leading to a terminal supply zone
infarction in the region of the middle cerebral
artery, from http//www.picker.com/mr/acr/perfusn
/perfusn.htm
174
Caution
  • Numbers obtained are not for true perfusion (as
    measured by PET)
  • Similar to dynamic CT, DSC measures
    micro-capillary flow
  • However good correlation between PET and DSC (in
    pigs), in humans??

175
True Perfusion by MRI
  • Arterial spin labeling
  • EPISTAR, ASL, QUIPS
  • label arterial blood on the way into brain
  • subtract images with and without labelling
  • difference is due to arterial water that has
    entered tissue, i.e. perfusion

176
Scanner Overview
Gradient Controller
Master Controller
X
Y
Z
RF Controller
RF Amplifier
DAC
Receiver
Gradient Coil
RF coil
preamp
Magnet
Write a Comment
User Comments (0)
About PowerShow.com