Quantum Hall effects - an introduction - - PowerPoint PPT Presentation

About This Presentation
Title:

Quantum Hall effects - an introduction -

Description:

Kaiserslautern, April 2006. Quantum Hall effects - an introduction ... spinless (for simplicity) and noninteracting electrons: Pauli principle. Slater determinant: ... – PowerPoint PPT presentation

Number of Views:2688
Avg rating:3.0/5.0
Slides: 45
Provided by: Mech9
Category:

less

Transcript and Presenter's Notes

Title: Quantum Hall effects - an introduction -


1
Quantum Hall effects- an introduction -
M. Fleischhauer
AvH workshop, Vilnius, 03.09.2006
2
quantum Hall history
discovery 1980
IQHE
Nobel prize 1985
K. v. Klitzing
FQHE
discovery 1982
Nobel prize 1998
H. Störmer
R. Laughlin
D. Tsui
3
classical Hall effect (1880 E.H. Hall)
Lorentz-force on electron
stationary current
Hall resistance
2
Dirac flux quantum
4
Landau levels
5
2D electrons in magnetic fields Landau levels
Hamiltonian
coordinate transformation
center of cyclotron motion
radial vector of cyclotron motion
electron
R
X
commutation relations
6
2D electrons in magnetic fields Landau levels
mapping to oscillator
H h? R² / 2 l² h? ( a a ½ )

c
c
m
Landau levels
7
2D electrons in magnetic fields Landau levels
typical scales
  • length

magnetic length
  • energy

cyclotron frequency
8
2D electrons in magnetic fields Landau levels
degeneracy of Landau levels
center of cyclotron motion (X,Y) arbitrary ?
degeneracy
  • 2D density of states (DOS)

one state per area of cyclotron orbit
  • filling factor

atoms / flux quanta
9
2D electrons in magnetic fields Landau levels
wavefunction of lowest Landau level (LLL) in
symmetric gauge
symmetric gauge
Landau gauge
introduce complex coordinate
b
LLL
analytic
10
2D electrons in magnetic fields Landau levels
angular momentum of Landau levels
eigenstates of nth Landau level
angular momentum states of LLL
11
2D electrons in magnetic fields Landau levels
wavefunction
j
12
Integer Quantum Hall effect
13
Integer Quantum Hall effect
spinless (for simplicity) and noninteracting
electrons Pauli principle
Slater determinant
14
Integer Quantum Hall effect
compressibility
at integer fillings
15
Integer Quantum Hall effect
Hall current
Heisenberg drift equations of cycoltron center
no plateaus ?!
16
Integer Quantum Hall effect
Hall plateaus impurities
gap !
  • impurities pin electrons to localized states
  • electrons in impurity states do not contribute
    to current
  • gap
  • ? impurity states fill first

17
Fractional Quantum Hall effect
18
Fractional Quantum Hall effect
Laughlin state
  • take e-e interaction into account
  • generic wavefunction
  • requirements
  • wave function anstisymmetric
  • eigenstate of angular momentum
  • Coulomb repulsion ? Jastrow-type of wave function

Laughlin wave function
19
Fractional Quantum Hall effect
angular momentum of Laughlin wave function and
filling factor
maximum single-particle angular momentum
filling factor of Laughlin state
20
Fractional Quantum Hall effect
fractional Hall plateaus
fractional Hall states are gapped
? 1
? 1/3
? 1/5
? 1/7
21
composite particle picture of FQHE
22
composite particle picture of FQHE
composite particle electron m magnetic flux
quanta
? composite fermion
? composite boson
effective magnetic field
composite particle are anyons (fractional
statistics) exist only in 2D
23
composite particle picture of FQHE
some remarks about anyons
  • two-particle wave function
  • exchange particles
  • exchange particles a second time

? in 3D
Boson
Fermion
3Dno projected area in (xy)
2D always projected area in (xy)
A
B
A
B
particles can pick up e.g. Aharanov-Bohm phase
24
composite particle picture of FQHE
? 1 / m
FQE
(A) electron flux quanta
form composite boson
0
Bose condensation of composite bosons
(B) electron flux quanta
form composite fermion
?
IQHE for composite fermions
25
composite particle picture of FQHE
Jain hierarchy
  • experiment FQHE also for

composite fermion picture
since
?
26
FQHE for interacting bosons
27
FQHE for interacting bosons
exact diagonalization ? FQH effect for
Laughlin state for point interaction
composite fermions
boson single flux quantum


IQHE for composite fermions
28
Thanks!
29
effective magnetic fields in rotating traps
30
atoms in dark states
for dark states see e.g. E. Arimondo,
Progress in Optics XXXV (1996)
adiabatic eigenstates

?
O
D
-
?
dark state (no fluoresence)
p
s
31
center of mass motion of atoms in dark states
  • space-dependent dark states atomic motion

0gt
R. Dum M. Olshanii, PRL 76, 1788 (1996)
O
O
p
s
1gt
2gt
transformation to local adiabatic basis
? gauge potential A scalar potential
32
(i) magnetic fields
O
O
p
s
effective vector potential magnetic field

relative momentum vector
difference of center of mass of light beams
relative orbital angular momentum needed !
33
magnetic fields (a) vortex light beams
V
eff
ratio of fields
external trap
B
G. Juzeliunas and P.Öhberg, PRL 93, 033602
(2004) P. Öhberg, J. Ruseckas, G. Juzeliunas,
M.F. PRA 73, 025602 (2006)
34
magnetic fields (b) shifted light beams
x
V
eff
?x
B
z
y
? ? ?? ?x
  • Quantum-Hall effect in non-cylindrical systems
  • non-stationary situation possible (current in z)

35
(ii) non-Abelian gauge fields
J. Ruseckas, G. Juzeliunas, P. Öhberg, M.F.
Phys.Rev.Lett 95 010404 (2005)
  • more than one relevant adiabatic state !
    TRIPOD scheme

2 x 2 vector matrix
36
magnetic monopole field
singularity lines
O
O
2
1
O
3
? point singularity at the origin
37
summary
  • motion of atom in space-dependent dark states
  • ? gauge potential A
  • light beams with relative OAM
  • ? magnetic field B
  • degenerate dark states
  • ? non-Abelian magnetic fields (monopoles,...)
  • vortex light beams
  • displaced beams (non-cylindrical geometry,
    currents)

38
quantum gases as many-body model systems
  • lattice models

Bose-Hubbard model Bose-Fermi-H. model spin
models
  • BCS BEC
  • crossover

Feshbach resonances fermionic superfluidity
  • quantum-Hall physics
  • rotating traps
  • vortices, vortex lattices
  • lowest Landau level

39
quantum gases as many-body model systems
  • quantum-Hall physics
  • rotating traps
  • vortices, vortex lattices
  • lowest Landau level

40
magnetic fields (a) vortex light beams
V
eff
external trap
B
ratio of fields
41
many-body solid-state physics
ultra-cold atoms molecules
instruments of quantum optics coherent control
42
quantum-Hall physics
filling factor
2
(R / l )
N flux quanta N atoms
?
m
  • hydrodynamics ? gtgt 1
  • quantum effects ? 1 ? ?

0
43
(No Transcript)
44
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com