Title: Quantum Hall effects - an introduction -
1Quantum Hall effects- an introduction -
M. Fleischhauer
AvH workshop, Vilnius, 03.09.2006
2quantum Hall history
discovery 1980
IQHE
Nobel prize 1985
K. v. Klitzing
FQHE
discovery 1982
Nobel prize 1998
H. Störmer
R. Laughlin
D. Tsui
3classical Hall effect (1880 E.H. Hall)
Lorentz-force on electron
stationary current
Hall resistance
2
Dirac flux quantum
4Landau levels
52D electrons in magnetic fields Landau levels
Hamiltonian
coordinate transformation
center of cyclotron motion
radial vector of cyclotron motion
electron
R
X
commutation relations
62D electrons in magnetic fields Landau levels
mapping to oscillator
H h? R² / 2 l² h? ( a a ½ )
c
c
m
Landau levels
72D electrons in magnetic fields Landau levels
typical scales
magnetic length
cyclotron frequency
82D electrons in magnetic fields Landau levels
degeneracy of Landau levels
center of cyclotron motion (X,Y) arbitrary ?
degeneracy
- 2D density of states (DOS)
one state per area of cyclotron orbit
atoms / flux quanta
92D electrons in magnetic fields Landau levels
wavefunction of lowest Landau level (LLL) in
symmetric gauge
symmetric gauge
Landau gauge
introduce complex coordinate
b
LLL
analytic
102D electrons in magnetic fields Landau levels
angular momentum of Landau levels
eigenstates of nth Landau level
angular momentum states of LLL
112D electrons in magnetic fields Landau levels
wavefunction
j
12Integer Quantum Hall effect
13Integer Quantum Hall effect
spinless (for simplicity) and noninteracting
electrons Pauli principle
Slater determinant
14Integer Quantum Hall effect
compressibility
at integer fillings
15Integer Quantum Hall effect
Hall current
Heisenberg drift equations of cycoltron center
no plateaus ?!
16Integer Quantum Hall effect
Hall plateaus impurities
gap !
- impurities pin electrons to localized states
- electrons in impurity states do not contribute
to current - gap
- ? impurity states fill first
17Fractional Quantum Hall effect
18Fractional Quantum Hall effect
Laughlin state
- take e-e interaction into account
- wave function anstisymmetric
- eigenstate of angular momentum
- Coulomb repulsion ? Jastrow-type of wave function
Laughlin wave function
19Fractional Quantum Hall effect
angular momentum of Laughlin wave function and
filling factor
maximum single-particle angular momentum
filling factor of Laughlin state
20Fractional Quantum Hall effect
fractional Hall plateaus
fractional Hall states are gapped
? 1
? 1/3
? 1/5
? 1/7
21composite particle picture of FQHE
22composite particle picture of FQHE
composite particle electron m magnetic flux
quanta
? composite fermion
? composite boson
effective magnetic field
composite particle are anyons (fractional
statistics) exist only in 2D
23composite particle picture of FQHE
some remarks about anyons
- two-particle wave function
- exchange particles a second time
? in 3D
Boson
Fermion
3Dno projected area in (xy)
2D always projected area in (xy)
A
B
A
B
particles can pick up e.g. Aharanov-Bohm phase
24composite particle picture of FQHE
? 1 / m
FQE
(A) electron flux quanta
form composite boson
0
Bose condensation of composite bosons
(B) electron flux quanta
form composite fermion
?
IQHE for composite fermions
25composite particle picture of FQHE
Jain hierarchy
composite fermion picture
since
?
26 FQHE for interacting bosons
27FQHE for interacting bosons
exact diagonalization ? FQH effect for
Laughlin state for point interaction
composite fermions
boson single flux quantum
IQHE for composite fermions
28Thanks!
29effective magnetic fields in rotating traps
30atoms in dark states
for dark states see e.g. E. Arimondo,
Progress in Optics XXXV (1996)
adiabatic eigenstates
?
O
D
-
?
dark state (no fluoresence)
p
s
31center of mass motion of atoms in dark states
- space-dependent dark states atomic motion
0gt
R. Dum M. Olshanii, PRL 76, 1788 (1996)
O
O
p
s
1gt
2gt
transformation to local adiabatic basis
? gauge potential A scalar potential
32(i) magnetic fields
O
O
p
s
effective vector potential magnetic field
relative momentum vector
difference of center of mass of light beams
relative orbital angular momentum needed !
33magnetic fields (a) vortex light beams
V
eff
ratio of fields
external trap
B
G. Juzeliunas and P.Öhberg, PRL 93, 033602
(2004) P. Öhberg, J. Ruseckas, G. Juzeliunas,
M.F. PRA 73, 025602 (2006)
34magnetic fields (b) shifted light beams
x
V
eff
?x
B
z
y
? ? ?? ?x
- Quantum-Hall effect in non-cylindrical systems
- non-stationary situation possible (current in z)
35(ii) non-Abelian gauge fields
J. Ruseckas, G. Juzeliunas, P. Öhberg, M.F.
Phys.Rev.Lett 95 010404 (2005)
- more than one relevant adiabatic state !
TRIPOD scheme
2 x 2 vector matrix
36magnetic monopole field
singularity lines
O
O
2
1
O
3
? point singularity at the origin
37summary
- motion of atom in space-dependent dark states
- ? gauge potential A
- light beams with relative OAM
- ? magnetic field B
-
- degenerate dark states
- ? non-Abelian magnetic fields (monopoles,...)
- vortex light beams
- displaced beams (non-cylindrical geometry,
currents)
38quantum gases as many-body model systems
Bose-Hubbard model Bose-Fermi-H. model spin
models
Feshbach resonances fermionic superfluidity
- quantum-Hall physics
- rotating traps
- vortices, vortex lattices
- lowest Landau level
39quantum gases as many-body model systems
- quantum-Hall physics
-
- rotating traps
- vortices, vortex lattices
- lowest Landau level
40magnetic fields (a) vortex light beams
V
eff
external trap
B
ratio of fields
41many-body solid-state physics
ultra-cold atoms molecules
instruments of quantum optics coherent control
42quantum-Hall physics
filling factor
2
(R / l )
N flux quanta N atoms
?
m
0
43(No Transcript)
44(No Transcript)