Linear scaling solvers based on Wannierlike functions - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Linear scaling solvers based on Wannierlike functions

Description:

Localized Molecular Orbitals (molecules) Locality of Wave Functions. Energy: ... Data on input (ON.Eta). Problem: can change during SCF and dynamics. ... – PowerPoint PPT presentation

Number of Views:102
Avg rating:3.0/5.0
Slides: 32
Provided by: josem2
Category:

less

Transcript and Presenter's Notes

Title: Linear scaling solvers based on Wannierlike functions


1
Linear scaling solvers based on Wannier-like
functions
P. Ordejón Institut de Ciència de Materials de
Barcelona (CSIC)
2
Linear scaling Order(N)
CPU load
3
N
N
Early 90s
N ( atoms)
100
3
Order-N DFT
  • Find density and hamiltonian (80 of code)
  • Find eigenvectors and energy (20 of code)
  • Iterate SCF loop
  • Steps 1 and 3 spared in tight-binding schemes

4
Key to O(N) locality
Large system
Divide and conquer W. Yang, Phys. Rev. Lett.
66, 1438 (1992) Nearsightedness W. Kohn,
Phys. Rev. Lett. 76, 3168 (1996)
5
Locality of Wave Functions
Wannier functions (crystals) Localized Molecular
Orbitals (molecules)
6
Locality of Wave Functions
Energy
Unitary Transformation
We do NOT need eigenstates! We can compute
energy with Loc. Wavefuncs.
7
Locality of Wave Functions
Exponential localization (insulators)
Wannier function in Carbon (diamond) Drabold et
al.
8
Locality of Wave Functions
Insulators vs Metals
? Carbon (diamond) ? Aluminium
Goedecker Teter, PRB 51, 9455 (1995)
9
Linear Scaling
Localization Truncation
  • Sparse Matrices

5
4
  • Truncation errors

2
1
3
In systems with a gap. Decay rate a depends on
gap Eg
10
Linear Scaling Approaches
  • (Localized) object which is computed
  • - wave functions
  • - density matrix
  • Approach to obtain the solution
  • - minimization
  • - projection
  • spectral
  • Reviews on O(N) Methods Goedecker, RMP 98
  • Ordejón, Comp. Mat. Sci.98

11
Basis sets for linear-scaling DFT
  • LCAO - Gaussian based QC machinery
  • M. Challacombe, G.
    Scuseria, M. Head-Gordon ...
  • - Numerical atomic orbitals
    (NAO)
  • SIESTA
  • S. Kenny . A
    Horsfield (PLATO)
  • OpenMX
  • Hybrid PW Localized orbitals
  • - Gaussians J. Hutter, M.
    Parrinello
  • - Localized PWs
  • C. Skylaris, P, Haynes M.
    Payne
  • B-splines in 3D grid
  • D. Bowler M. Gillan
  • Finite-differences (nearly O(N))
  • J. Bernholc

12
Divide and conquer
Weitao Yang (1992)
13
Fermi operator/projector
Goedecker Colombo (1994)
f(E) 1/(1eE/kT) ? ?n cn En F ? ? cn
Hn Etot Tr F H Ntot Tr F




14
Density matrix functional
Li, Nunes Vanderbilt (1993)
15
Wannier O(N) functional
  • Mauri, Galli Car, PRB 47, 9973 (1993)
  • Ordejón et al, PRB 48, 14646 (1993)

16
Order-N vs KS functionals
17
Chemical potential
Kim, Mauri Galli, PRB 52, 1640 (1995)
  • ?(r) 2?ij ?i(r) (2?ij-Sij) ?j(r)
  • EOM Trocc (2I-S) H states
    electron pairs
  • ? Local minima
  • EKMG Trocc (2I-S) (H-?S) states
    gt electron pairs
  • ? chemical potential (Fermi energy)
  • Ei gt ? ? ?i ? 0
  • Ei lt ? ? ?i ? 1
  • Difficulties
    Solutions
  • Stability of N(?) Initial
    diagonalization / Estimate of ?
  • First minimization of EKMG Reuse previous
    solutions

18
Orbital localization
??
?i(r) ?? ci? ??(r)
19
Convergence with localisation radius
Si supercell, 512 atoms
Relative Error ()
Rc (Ang)
20
Sparse vectors and matrices
Restore to zero xi ? 0 only
21
Actual linear scaling
c-Si supercells, single-?
Single Pentium III 800 MHz. 1 Gb RAM
132.000 atoms in 64 nodes
22
Linear scaling solver practicalities in SIESTA
P. Ordejón Institut de Ciència de Materials de
Barcelona (CSIC)
23
Order-N in SIESTA (1)
  • Calculate Hamiltonian
  • Minimize EKS with respect to WFs (GC
    minimization)
  • Build new charge density from WFs

SCF
24
Energy Functional Minimization
  • Start from initial LWFs (from scratch or from
    previous step)
  • Minimize Energy Functional w.r.t. ci?
  • EOM Trocc (2I-S) H or
  • EKMG Trocc (2I-S) (H-?S)
  • Obtain new density
  • ?(r) 2?ij ?i(r) (2?ij-Sij)
    ?j(r)

ci(r) ?? ci? ??(r)
25
Orbital localization
??
?i(r) ?? ci? ??(r)
26
(No Transcript)
27
Order-N in SIESTA (2)
  • Practical problems
  • Minimization of E versus WFs
  • First minimization is hard!!! (1000 CG
    iterations)
  • Next minimizations are much faster (next SCF and
    MD steps)
  • ALWAYS save SystemName.LWF and SystemName.DM
    files!!!!
  • The Chemical Potential (in Kims functional)
  • Data on input (ON.Eta). Problem can change
    during SCF and dynamics.
  • Possibility to estimate the chemical potential in
    O(N) operations
  • If chosen ON.Eta is inside a band (conduction or
    valence), the minimization often becomes unstable
    and diverges
  • Solution I use chemical potential estimated on
    the run
  • Solution II do a previous diagonalization

28
Example of instability related to a wrong
chemical potential
29
Order-N in SIESTA (3)
  • SolutionMethod OrderN
  • ON.Functional Ordejon-Mauri or Kim
    (def)
  • ON.MaxNumIter Max. iterations in CG minim.
    (WFs)
  • ON.Etol Tolerance in the energy
    minimization
  • 2(En-En-1)/(EnEn-1) lt ON.Etol
  • ON.RcLWF Localisation radius of WFs

30
Order-N in SIESTA (4)
  • ON.Eta (energy units) Chemical Potential
    (Kim) Shift of Hamiltonian (Ordejon-Mauri)
  • ON.ChemicalPotential
  • ON.ChemicalPotentialUse
  • ON.ChemicalPotentialRc
  • ON.ChemicalPotentialTemperature
  • ON.ChemicalPotentialOrder

31
Fermi operator/projector
Goedecker Colombo (1994)
f(E) 1/(1eE/kT) ? ?n cn En F ? ? cn
Hn Etot Tr F H Ntot Tr F



Write a Comment
User Comments (0)
About PowerShow.com