Deterministic Chaos and Rhythms of Life - PowerPoint PPT Presentation

1 / 60
About This Presentation
Title:

Deterministic Chaos and Rhythms of Life

Description:

2. Dynamic Complexity & Human Physiology. Human Heart Beat, Gait (Dis)-Order, Chaos and Disease ... Heart Rate ? Fractal Dynamics of Human Walking. Human Gait ... – PowerPoint PPT presentation

Number of Views:197
Avg rating:3.0/5.0
Slides: 61
Provided by: thomas3
Category:

less

Transcript and Presenter's Notes

Title: Deterministic Chaos and Rhythms of Life


1
Deterministic Chaos and Rhythms of Life
  • Dr. Thomas Caraco

2
Outline
  • 1. Ecological Complexity
  • Background
  • Population Dynamics Route to Chaos
  • Evolution to Edge of Chaos?
  • 2. Dynamic Complexity Human Physiology
  • Human Heart Beat, Gait
  • (Dis)-Order, Chaos and Disease

3
Chaos Research Significance
  • Biological, Physical and Social Sciences
  • Systems with Nonlinear Dynamics
  • Generator of Chaos and Complexity
  • New Perspective on Law of Causality
  • Very Similar Cause ?Very Similar Effect?
  • Practical Applications
  • Control Dynamical Systems

4
Intl Sun-Earth Explorer-3/ICE
5
Deductive Modeling
  • Specify Detailed Assumptions
  • Essence of Question, Avoid Nonessential
  • Apply Math (Deduction)
  • Results Follow from Assumptions
  • Theory
  • Predictions, Hypotheses for Test

6
  • One of the principle objects of theoretical
    research in any department of knowledge is to
    find the point of view from which the subject
    appears in its greatest simplicity.
  • J. W. Gibbs, 1881
  • Poetry leaves other (nonessential) data out of
    the relational field narrows the focus.
  • J. Johnson, 2004

7
Inductive Modeling
  • Observing, Manipulating
  • Statistical Inference
  • Interpret
  • Hypotheses for Test

8
  • Chaos Theory New?
  • Poincarè (1892-94) Dynamic Tangles
  • Lorenz (1963) Aperiodic Complexity
  • Sarkovskii (1964) Windows of Order
  • 1974 1985 Dynamical Renaissance

9
Chaos Ecological Significance
  • Population Regulation before 1975
  • Physical Factors ? Random Fluctuations
  • Density Dependence Stabilizing
  • New Perspective on Density Dependence
  • Constancy to Chaotic Complexity
  • Understand Mix Nonlinear, Random Dynamics

10
Simple Model, Complex Dynamics
  • R.M. May
  • Logistic Map
  • General Paradigm
  • for
  • Emergence of Chaos
  • Metric Universality

11
Annual Life Cycle
  • Population Density
  • x(t) Map to x(t1)
  • Individual Reproduction
  • Density-Dependent

12
Nonlinear Map x(t1) r x(t) x(t)2
  • Increase Fecundity r

13
Behavior of Map Dynamics
  • 1
  • Equilibrium Node
  • Any Initial Density
  • ? Same Equilibrium

14
Dynamics
  • r 3.3
  • Bifurcation
  • Equilibrium 2-Cycle
  • Periodic Dynamics
  • Time Symmetry

15
Dynamics
  • r 3.56
  • Bifurcation
  • Equilibrium 4-Cycle
  • Increased Complexity

16
Bifurcation Cascade
  • Period-Doubling Route to Chaos
  • Infinite Number of Bifurcations
  • Feigenbaum Point
  • r 3.56994456
  • Chaos Non-Equilibrium in Nature

17
Deterministic Chaos
  • Bounded
  • Close to Extinction
  • Aperiodic
  • No State Repeats!
  • Not Random!
  • Correlations
  • Sensitive Dependence
  • Initial Conditions

18
Bifurcation Diagram
  • Route to Chaos
  • Periodic Windows
  • Universality
  • Strange
  • Attractor

19
Fractal Behavior
  • Self-Similarity
  • Scale Invariance
  • Repeating Geometry
  • Signature of Chaos

20
  • Metric Universalities
  • Feigenbaum Ratios
  • Periodic Window
  • Sequence
  • Quantitative Identicality

21
Strange AttractorCantor Set
22
Real Populations Chaotic?
  • Within Populations
  • Favor Faster Growth
  • Complex Dynamics, Fluctuations
  • ? Extinction
  • Among Populations
  • Dynamic Stability ? Persistence
  • Evolve to Edge of Chaos?

23
Real Populations
  • Remove Random Error
  • Reconstruct Map
  • Test for Divergence
  • Lack of Data Require Lengthy Records
  • Costantino et al. 1997. Science 275389-391.
  • Ellner Turchin. 1995. Amer. Naturalist
    145343-375.
  • Olsen Schaffer. 1990. Science 249499-504.

24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
Childhood Disease
28
Lessons from Simple Nonlinearities
  • Universalities Stability ? Complexity
  • Equilibrium ? Non-Equilibrium
  • Small Parameter Changes
  • ? Qualitative Change in Behavior
  • Chaos Small Change in State
  • ? Quantitative Divergence of Systems

29
Lessons from Simple Nonlinearities
  • Chaos Emergence of Fractal Order
  • Break Symmetry of Past Future
  • Non-Random Behavior, Correlations
  • Ecological Complexity ? Loss Predictability

30
Fractal Physiology
  • Diseases were explained in terms of
    disharmony and imbalance the goal of medicine
    was to restore balance.
  • V. Ng (1990), Madness in Chinese Culture
  • Compelling examples of chaotic dynamics are
    found in periodic stimulation of biological
    oscillators.
  • D. Kaplan L. Glass, 1995

31
Human Heart EKG
32
Fractal Dynamics of Human Heart Rate
  • Classical Paradigm
  • Equilibrium ?
  • Homeostasis
  • Average Rates
  • Novel
  • Hidden Variability

33
Fractal Process (Inter-beat Interval thru Time)
  • Self-Similarity
  • Sub-unit Statistically Identical to Whole
  • Scaling Between Time Windows
  • ? Self-Similarity Parameter (DFA)
  • http//reylab.bidmc.harvard/tutorial/DFA
  • http//www.physionet.org/challenge

34
(No Transcript)
35
Scaling Rate Variability
  • Periodicity 0
  • Random (Uncorrelated Noise) ? 0.5
  • Fractal (Power Law Behavior,
  • Long Range Correlations) 0.5
  • Random Walk ? 1

36
Complexity of Heart Beat Dynamics
  • Fractal-Type Variability Inter-beat Interval
  • No Characteristic Time Scale
  • Generates Long-Range Organization
  • Order in Chaotic Signal

37
Heart Rate Healthy SubjectInter-beat Interval
Fractal
38
Heart Rate Healthy, Disease, Aging
39
CHF Patients
  • Clinical Utility
  • Complexity Loss

40
Meditation Heart Rate ?
41
Fractal Dynamics of Human Walking
42
Human Gait Fractal
43
Walking Rate Stride Dynamics
44
Gait in Aging Disease
45
Huntingtons Disease
  • Low Severity (Score10)
  • ? Fractal Gait
  • Severe (Score
  • ? Periodic Gait

46
Heart Dynamics
  • Health
  • Fractal Over 1000s Heartbeats
  • Persistently Chaotic Sleep-Wake Cycle
  • Cardiovascular Disease
  • Loss of Complexity
  • Random, Periodic Heart Rate
  • Complexity Can Predict Survival

47
Gait Dynamics
  • Health
  • Fractal Over 1000s Strides
  • Persistent Across Pace
  • Neurodegenerative Disease
  • Loss of Complexity
  • Random Gait
  • Complexity May Predict Injury

48
Loss of Fractal Complexity
  • EEG Epilepsy
  • Respiration Sleep Apnea
  • White Cell Count Myelogenous Leukemia
  • Blood Pressure Kidney Function

49
Fractal Physiological Rates
  • How?
  • Complex Regulation
  • Mechanisms Effective Different Time Scales
  • Information Content
  • Why? Adaptive Significance?
  • Inhibits Mode-Locking Response Scale
  • Maintains Organisms Functional Plasticity
  • Respond at Multiple Scales of Time

50
Sudden Cardiac Death
  • Kills ½ Million Annually in U.S.
  • Ventricular Fibrillation
  • Uncoordinated Shivering Multiple Modes
  • Myocardial Infarction ? Fibrillation
  • ¼ Male SCD, Ages 20-64, No Infarction

51
  • EKG Faint Current, Bodys Saline
  • Cardiac Cycle Phases
  • Spatial Temporal Organization
  • Local Current, Local Voltage
  • Voltage Spatial Diffusion, Couples Locations
  • Different Location, Different Phase

52
Electrical Heartbeat
  • Time t, Spatial Location x
  • V(t, x) Membrane Voltage
  • g(t, x) Ion channel conductance
  • K Diffusion coefficient

53
Time Space Isochrones
54
Singularity Time Breaks Down
55
Phase Singularities
  • Rotors in Excitable Media
  • Myocardium
  • Excitable, Biological Oscillators
  • Has Phase Singularities, Clock Breaks

56
Singularities Re-entrants
57
Attractors Electrical Activity
  • Normal Oscillation
  • Almost Periodic, Functional
  • Space-Time Chaos (Turbulence)
  • Re-entrant Waves
  • Rotor(s) Induced by Singularity
  • Fibrillation, Dysfunctional
  • Alternate Attractors, Fibrillation cartoon

58
Citations
  • http//reylab.bidmc.harvard/tutorial/DFA
  • Keener, J.P. 2002. Heart attacks can give you
    mathematics.
  • http//www.math.utah.edu/keener/lectures/Arrhyth
    mias
  • Goldberger, A.L. 1999. Nonlinear dynamics,
    fractals, and chaos theory implications for
    neuroautonomic heart rate control in health and
    disease. In Bolis, C.L. Licinio, J. (eds) The
    Autonomic Nervous System. World Health
    Organization, Geneva, Switzerland.
  • Alligood, K.T., Sauer, T.D. Yorke, J.A. 1997.
    Chaos An Introduction to Dynamical Systems.
    Springer, New York, NY.
  • Kaplan, D. Glass, L. 1995. Understanding
    Nonlinear Dynamics. Springer, New York, NY.
  • http//www.economist.com/displayStory.cfm?Story_ID
    324885

59
  • The danger already exists that the
    mathematicians have made a covenant with the
    devil to darken the spirit and to confine man in
    the bonds of Hell.
  • St. Augustine

60
  • People who wish to analyze nature without using
    mathematics must settle for a reduced
    understanding.
  • Richard Feynman
Write a Comment
User Comments (0)
About PowerShow.com