Introduction to Econometrics - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Introduction to Econometrics

Description:

For a time series variable to be considered as a stationary series, the ... test: plot the sample autocorrelation function (ACF) at successive lags against ... – PowerPoint PPT presentation

Number of Views:256
Avg rating:3.0/5.0
Slides: 23
Provided by: uvp4
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Econometrics


1
Introduction to Econometrics
  • Lecture week 11
  • Time Series Econometrics
  • Stationary versus nonstationary series

2
Stationary versus nonstationary series
  • Spurious regression a regression of one time
    series variable on another yielding a very high
    R2 although the two have no meaningful economic
    or inherent relationship. This often occurs
    precisely because both series exhibit a common
    strong trend.
  • Spurious regression a regression of one time
    series variable on another which gives a series
    of residuals which violate the classical linear
    regression assumptions. This could again be
    attributed to the presence of trend in one or two
    of the variables.
  • Exception the latter may not hold true if a
    linear combination of the time series variables
    in question (i.e. the residual) is free from
    trend.
  • In general any series with a trend is considered
    as a nonstationary series.
  • Consequence of spurious regression the usual t
    and F tests will be invalid.
  • Objective of the lecture the concept of
    stationarity, how to test for it, what
    implications of nonstationarity are, and
    conditions under which nonstationarity proves not
    to be problematic.

3
Requirements for a time series variable to be
stationary.
  • For a time series variable to be considered as a
    stationary series, the following conditions must
    be satisfied
  • Mean E(Yt) ?
  • Variance Var (Yt) E(Yt - ?)2 ?2
  • Covariance ?k E(Yt - ?)(Ytk - ?) 0

4
Examples of SAS Nonstationary TIME SERIES Data
5
Graphs of Logarithms of SAs Total Agricultural
Production Index (LAGPRO) and Combined Producer
Price Index of Agricultural Production (LAGPRICE)
6
Tests for Stationarity correlogram unit root
  • Correlogram test plot the sample autocorrelation
    function (ACF) at successive lags against the
    length of the lag.
  • Unit root this is a formal test for stationarity
    of a variable. Test for unit root is conducted
    using either Dickey-Fuller (DF) or Augmented
    Dickey-Fuller (ADF) procedures.
  • DF test ?LAGPROt ?1 ?2t ? LAGPROt-1
    ut
  • ADF test

7
Correlogram test for stationarity of logarithms
of index of agricultural production (on levels)
and combined index of producer prices (on levels)
8
Graph of the logarithm of Ag Prodn on levels
(LAGPRO) and after trend is removed (D(LAGPRO))
9
Graph of the logarithms of the combined producer
price index on levels (LAGPRPRICE) and after
trend is removed (D(LAGPRPRICE))
10
Correlogram test for stationarity of logarithms
of index of combined index of producer prices
before and after trend is removed
11
CONCLUSION ON THE STATIONARITY OF PRODUCTION AND
PRICE DATA USING CORRELOGRAM TEST
  • Production is stationary but price is not in
    levels.
  • Price was differenced once and the test was
    carried out again to check if trend was
    completely removed. According to the result, the
    no autocorrelation null was not rejected.
  • Therefore, production is integrated of order zero
    (I(0)) because no significant trend was detected.
    But price is integrated of order two (I(1))
    because it was differenced once to make it
    stationary.

12
Unit Root Test A formal test for the
stationarity of a variable
  • Random walk has a coefficient (?) which is unity
    and its variance increases or decreases over
    time.
  • Yt ?Yt-1 ut

13
Unit Root Test A formal test for the
stationarityof a variable (cont)
  • Yt ?Yt-1 ut ........................
    .........(1)
  • Ut is N (0, ?2)
  • Subtract Yt-1 from each side of equation 1
  • Yt- Yt-1 (1- ?) Yt-1 ut
  • ?Yt ? Yt-1 ut ..........................
    .........(2)
  • Where ?Yt Yt- Yt-1 , ? (1- ?)
  • If ? 0, ? 1 therefore equation 2 becomes
  • ?Yt ut .......(3)
  • Equation 3 means that first difference of a
    random walk series is
  • stationary b/c from slide 3 we know that the mean
    and variance of a
  • stationary series are time invariant and the
    series is not autocorrelated.
  • A random walk is I(1).
  • Note stationarity of Yt is checked by running
    equation 2 and testing for
  • the significance of ?. If not significant, ? 1
    and Yt is random walk or
  • nonstationary.
  • Dickey and Fuller tabulated the appropriate ?
    (tau) statistics

14
ADF APPROACH TO TEST FOR THE PRESENCE OF A UNIT
ROOT IN THE LOGARITHM OF SAS AGRICULTURAL
PRODUCTION
15
ADF APPROACH TO TEST FOR THE PRESENCE OF A UNIT
ROOT IN THE LOGARITHM OF SAS AGRICULTURAL
PRODUCER PRICE ON LEVELS
16
ADF APPROACH TO TESTING THE PRESENCE OF A UNIT
ROOT IN THE LOGARITHM OF SAS AGRICULTURAL
PRODUCER PRICE ON FIRST DIFFERENCE
17
ADF APPROACH TO TESTING THE PRESENCE OF A UNIT
ROOT IN THE LOGARITHM OF SAS AGRICULTURAL
PRODUCER PRICE ON SECOND DIFFERENCE
18
COMPARISON OF AGRICULTURAL PRODUCER PRICE ON
FIRST SECOND DIFFERENCE
19
CONCLUSION ON THE STATIONARITY OF PRODUCTION AND
PRICE DATA USING ADF TEST
  • Production is stationary i.e. I(0).
  • Price is I(2) not I(1)
  • The ADF test is a robust test.

20
Nonstationary processes trend stationary process
(TSP) and difference stationary process (DSP)
  • The distinction is useful to make good forecast
  • TSP the trend is deterministic (predictable)

21
Nonstationary processes trend stationary process
(TSP) and difference stationary process (DSP)
Cont..
  • DSP the trend is non deterministic or stochastic
    (unpredictable).
  • Most time series data are characterized by
    deterministic trend.

22
Techniques to distinguish TSP from DSP
  • The ADF test is a more convenient method.
  • If ?2 ? 0 and d ?0 ? LAGPROt is TSP (detrended
    LAGPRO follows a stationary AR process)
  • If ?2 0 and d 0 ? LAGPROt is DSP (LAGPRO
    follows a nonstationary RW process)
  • When we test for the presence of a unit root in a
    series, we are testing against the alternative of
    trend stationarity
Write a Comment
User Comments (0)
About PowerShow.com