Introduction to Digital Images - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Introduction to Digital Images

Description:

Receptivity of the Eye Cells. 15. RGB Color Space (0,0) ... Instead, first is stored the complete red component, then the complete green, then blue. ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 39
Provided by: vok
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Digital Images


1
Introduction to Digital Images
  • Thomas Moeslund
  • Computer Vision and Media Technology lab.
  • Aalborg University
  • tbm_at_cvmt.dk

2
Hvorfor skal ST stud. høre om billeder ?
  • Mange billed optagere i sundheds sektoren MR,
    CT, PET,
  • Mange billeder i hverdagen

3
Agenda
  • Hvad er digitale billeder (definitioner)
  • Hvordan kan computeren bruges til at behandle
    billeder (billedbehandling)
  • Generelt
  • Medicinske billeder

4
Image definitions
5
Where does an image come from?
6
Where does an image come from?
Charged coupled device CCD-chip
7
Where does an image come from?
Under exposed
Correct exposed
  • Integration over time
  • Exposure time
  • Maximum charge
  • Saturation
  • Blooming

Over exposed
8
Where does an image come from?
  • Image elements, picture elements, pels, pixels

9
Imaging system
  • Image acquisition
  • Illumination
  • Passive sun
  • Active ordinary lamp, X-ray, radar, IR
  • Camera lens
  • Focus the light on the CCD chip

10
Digital Image Representation
  • Image is seen as a discrete function f(x,y) as
    opposed to a continuous function (show)
  • x and y cannot take on any value!

11
Digital Image Representation
Width
  • An image f(x,y) is represented
  • as an Array
  • Width
  • number of pixels in x-direction
  • Height number of pixels in y-direction
  • Size (width x height, width gt height)
  • ROI region of interest
  • To reduce the amount of data

Height
12
Spatial Image Resolution
  • Resolution
  • The size of an area in a scene that is
    represented
  • by one pixel in the image
  • Different Resolutions are possible
    (256x256.16x16)
  • Lower resolution leads to data reduction!

13
Digital Image Representation
  • Pixel representation (bits)
  • A few words on bits and bytes One bit 0,1
  • One byte eight bits
  • One pixel one byte eight bits one number
    0,255 (show)
  • Grey-scale, intensity, black/white 8 bits
    0,255
  • Binary image 1 bit 0,1. Black and white
    visualized as 8 bit 0,255

14
Receptivity of the Eye Cells
15
RGB Color Space
A single pixel consists of three components
0,255. Each pixel is a Vector.
(0,0)

Pixel-Vector in the computer memory
Final pixel in the image
Caution! Sometimes pixels are not stored as
vectors. Instead, first is stored the complete
red component, then the complete green, then blue.
16
Example RGB
R-Component
Original Image
G-Component
B-Component
17
Gray-level Resolution Quantization
  • Different gray-level resolutions 256, 128, , 2
  • Less gray-levels leads to data reduction.
  • For 256, 128, 64 gray-levels Difference hardly
    visible

18
Applications
19
Image manipulation
  • Image improvement, e.g. too dark image
  • Rotate scale

20
Conveyer belt applications
  • Checking and sorting
  • For example checking bottles in the supermarket
  • Quality control
  • Does the object have the correct dimensions,
    color, shape, etc.?
  • Is the object broken?
  • Robot control
  • Find precise location of the object to be picked

21
Biometrics
  • Recognizing/verifying the identity of a person by
    analyzing one or more characteristics of the
    human body
  • Characteristics
  • Fingerprint, eye (retina, iris), ear, face, heat
    profile, shape (3D face, hand), motion (gait,
    writing),
  • Applications
  • Verifying Access control (bio-passports)
  • Recognizing Surveillance 9/11

22
Chroma keying
23
Analysis of Sport Motions
  • Here Analysis of motion of Sarah Hughes
  • 3D Tracking of body parts
  • Motion interpretation
  • Action recognition

24
Motion Capture
  • Special effects
  • Advertising
  • Movies
  • Vurdering af gang
  • Hvad er der galt?
  • Hvor godt er man
  • helbredt ?

Andy Serkis
25
Motion Capture
26
Medical Image Processing
  • Image Processing is widely used
  • E.g. Automatisk Analysis of microscopic images

27
Sædkvalitet
28
Sædkvalitet
29
Medical Image Processing
  • MR/CT Imaging of a human body
  • Use for Brain Surgery

30
Find blodkar
31
Mål hjernebarken
32
Mål hjernebarken
Inner surface
Outer surface
Initial surface
MRI Data
Max
Min
Measurements
33
Alzheimers Patient Two Time Points
26.09.1997 Thickness 2.03 mm Volume 349670 mm3
6 months
02.04.1998 Thickness 1.84 mm Volume 315561 mm3
Decrease 9
34
Medical Image Processing
  • Tarm
  • (2 videoer)

35
The end!
36
Opgaver til mm4 i GT-kurset
  • Konvertere flg. Base-10 tal til binære tal
  • 211 260 -12 7.5
  • Vi har målt et signal der svinger mellem
  • -3 Volt og 5 Volt. Vi vil lave en A/D-converter
    med en opløsning på 0.1
  • Hvor mange bits skal vi bruge ?
  • Lave en algoritme der kan konvertere fra base 10
    til base 2
  • NB Den skal kun kunne konvertere heltal i
    intervallet 0,200
  • I HTML kode skrives en 100 Grøn farve sådan
    00FF00
  • Hvorfor ?

37
Why are digital images interesting?
  • Humans are visual creatures in a
  • visual world
  • Images are (often) the primary sense
  • Imagine you could only keep one sense
  • A picture is worth a 1000 words
  • Words are many times ambiguous
  • So, if we want to build systems capable of human
    skills, then they should be capable of
    understanding images (many applications)
  • Hvorfor skal ST stud. høre om billeder ?
  • Mange billede optagere I sundheds sektoren MR,
    CT, PET,
  • Mange billeder i hverdagen

38
Image file types
  • image.jpg, image.tif, image.gif, image.png,
    image.ppm, .
  • Raw
  • No data is lost
  • Header data (234 235 32 21)
  • For example image.pgm
  • The file can be viewed
  • Lossless compression
  • No data is lost, but the file cannot be viewed
  • For example image.gif
  • Lossy compression
  • Better compression
  • Some data is lost (optimized from the HVS point
    of view)
  • The file cannot be viewed
  • For example image.jpg
Write a Comment
User Comments (0)
About PowerShow.com