Title: Particle Acceleration in Multiple Dissipation Regions
1Particle Acceleration in Multiple Dissipation
Regions
- Kaspar Arzner (PSI/ETHZ)
-
- Loukas Vlahos, Heinz Isliker, Fabio Lepreti
(AUTH) - Bernard Knaepen, Daniele Carati, Nicolas Denewet
(ULB)
2(No Transcript)
3Acceleration environment
hot spots with E.jgt0
- True MHD turbulence Gauss proxy
4Gauss Proxy for Dissipation Regions
magnetic field lines
Sample trajectory
- B0 20G, dBx dBy 20G, dBz 100G
- Outer scales
- lxly1km, lz20km
- Matern class PSD with index a1.5
- Threshold current jcencs exceeded in 5 of
volume
5Simulations at PSI
- Merlin cluster
- 56 nodes
- Myrinet / Ethernet
- code f90
- MPI / MPICH
6Diagnostics Anomaleous Diffusion
- What quantity to consider? P mgv is a good
candidate since it is unbounded and incremented
by the equation of motion. - For initially Maxwellian protons (T106K) we find
- EW / ED lt 103 ordinary diffusion.
- EW / ED gt 5 .103 subdiffusion.
7EW / ED 2.102 ltP2gt t
100 keV
EW / ED 105 ltP2gt t0.8
time
8Proton acceleration efficiency
200 ms
Terminal Proton Energy
rms dissipative field
9Proton lifecycle in the presence of an adiabtic
invariant Py
Reason ltvyEygt lt(Ay - Py)DAygt f(e,Py)
10Electron Acceleration
sample
mean
11Distribution of Energy Jumps
Simulation
Best-fit Levy stable distribution
12Close-up dominant B field direction is z
(x,y) Brown motion OK z jump/drift
dominated
13Also existing, and definitifely not Brownian
Adiabatic/bounded trajectories
14Velocity vs. Waiting time
Prob(Dt) f(Dt L/v)
15Shape of f(Dt v / L)
Exponential 1D Poisson nearest-neighbour
distance. (1D because of ltdBz2gt 10 ltdBx,y2gt)
16Summary
- Conversion of electromagnetic energy to other
forms implies j.E gt 0. The j-parallel component
of E is responsible for acceleration. - Present study super-Dreicer test particles in a
Gauss proxy for strong resistive MHD turbulence - Cross - (rms) field diffusion
- (rms) field-aligned jumps
- Fokker-Planck may be insufficient
References
Arzner, K. Vlahos, L., ApJ (2004) 605, L69
17(No Transcript)
18(No Transcript)
19-gt Montroll-Weiss type jump model
(Vlahos, Isliker, Lepreti 2003)
P(v,t -gt v,t) Pv(v-v) Pt(t-t)/t(v)/t(v)
t(v) collision time with dissipation regions
20Some exact Results (last-but-one slide!)
(q1/t )
21Resumee
- Super-Dreicer electrons perform energy jumps
when dissipation regions are encountered - On macroscopic (observable!) time scales, their
orbit is thus a jump process rather than Brownian
motion with continuous sample paths.
22EW / ED 105
t 0.8
23Normal Diffusion
100 keV
Initially maxwellian protons with T 106 K.