TimelyBid'com

1 / 13
About This Presentation
Title:

TimelyBid'com

Description:

Flash MX. Spider. Update AI models. Analyze & DM. Novelty. IDEA ... Data mining collection. Sean. TimelyBid website. Data mining algorithms. Database. Go Team! ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 14
Provided by: seanhum

less

Transcript and Presenter's Notes

Title: TimelyBid'com


1
TimelyBid.com
  • Provide an integration between eBay and Google
    Calendar for quick and easy visualization of
    timely data regarding eBay bids.
  • By Katie Varland, Josh Smith, Sean Humpherys
    MIS-510B with thanks to Dr. Chen Xin Li

2
(No Transcript)
3
Timely Bid Organization
customer
Registers
Spider
API calls
Spider MySQL DB
Timelybid.com
Update AI models
Analyze DM
API calls
Flash MX
Dynamic reports
Data miner with DM computer
4
Novelty
  • IDEA
  • Integrate bid data into Google Calendar from eBay
    real time
  • DATA MINING
  • AWOL risk assessment using three distinct AI
    algorithms
  • VISUALIZATION
  • Improved visualization of eBay data
  • Dynamic flash-based charts
  • Visualization of data mining predictions
  • LEVERAGE OPEN SOURCE
  • Joomla Joomla CMS modules
  • YALE/WEKA for data mining
  • XML/SWF Charts for dynamic charts

5
(No Transcript)
6
Open Source and Other Tools
  • Joomla CMS
  • Customized user registration module
  • Available Virtuemart for Pay Pal integration
    39.95
  • Apache/Linux/Php/MySQL
  • eBay API
  • Google Calendar API
  • RapidMinger (YALE) / Weka for data mining
  • XML/SWF Charts for dynamic charts (limited
    version free or full license 45)

7
(No Transcript)
8
Demo RapidMiner
  • RapidMiner formerly YALE
  • www.rapidminer.com
  • Download the OWN-free version for easy off-line
    mining
  • Download GPL version if you desire to dynamically
    link the system into your program

9
Business Model
  • Provide an integration between eBay and Google
    Calendar for quick and easy visualization of
    timely data regarding eBay bids.
  • Subscription model 12 / year
  • Advertising model
  • Uses Pay Pal as payment facilitator, integrates
    with Joomlas user registration module

10
Production Costs
11
ROI
  • Plan A Slow growth by Owners
  • Break even after 1050 customers (not including
    advertising revenue)
  • Plan B Fast growth with investors
  • Break even after 9000 customers (not including
    advertising revenue)

12
AI Avatars for AWAL Risk Assessment
  • AI Avatar Joseph is our risk adverse assessor
    using C4.5
  • AI Avatar Julie is an moderate risk assessor
    using AD Tree algorithm
  • AI Avatar Scott is our risk seeking assessor
    using REP Tree.

13
Data Mined
  • Data collected from eBay for mining purposes
  • isRegistered as dependent variable
  • userID
  • Lifetime Positive Feed Back
  • Feed Back Score
  • All Positive FB  
  • Member Since
  • Location
  • Items for Sale
  • of SubCategories
  • of Main Categories  
  • of One Month Positive Feedback
  • of Six Months Positive FB
  • of Twelve Months Positive FB
  • of One Month Negative FB
  • of Six Months Negative FB
  • of Twelve Months Negative FB  
  • of Positive FB
  • of Negative FB
  • FB Withdrawn Bids Retracted

14
Code for Avatars
  • if(userArray'twelveMoNeg' lt 1.5)
  • if (userArray'twelveMoPos' lt 0.5)
  • if (userArray'numPosFB' lt 46.5) vote
    true
  • else if (userArray'numPosFB' gt 46.5)
  • if(userArray'posFB' lt 97.55) vote
    false
  • else if(userArray'posFB' gt 97.55)
  • if (userArray'allPosFB' lt 23450.5)
  • if (userArray'allPosFB' lt 13578.5)
    vote false
  • else if (userArray'allPosFB' gt
    13578.5) vote true
  • else if (userArray'allPosFB' gt
    23450.5) vote false

15
AWOL Risk Assessment
  • Collected nearly 150,000 records on eBay users
  • In experimental phase, used up to 80,000 records
    for training. Resulted in over-learning but
    identified important attributes.
  • In production phase, used 13,000 specially
    selected records to train and 50,000 to test.
    Achieved between 95 and 98 accuracies on
    predicting if the user became unregistered in the
    last thirty days.

16
How to Chart Data
  • XML/SWF Charts
  • Charts.swf
  • PHP Demo
  • lt!-- Data actual --gt
  • ltchart_datagt
  • ltrowgt
  • ltnull/gt
  • ltstringgt
  • lt?php mysql_data_seek(MaxBidByBidder,0) ?gt
  • lt?php while (row_MaxBidByBidder
    mysql_fetch_assoc(MaxBidByBidder)) ?gt
  • lt?php echo row_MaxBidByBidder'BidderID' ?gt
  • lt?php ?gt
  • lt/stringgt
  • lt/rowgt
  • ltrowgt
  • ltstringgtlt/stringgt
  • ltstringgt
  • lt?php mysql_data_seek(MaxBidByBidder,0) ?gt
  • lt?php while (row_MaxBidByBidder
    mysql_fetch_assoc(MaxBidByBidder)) ?gt

17
Responsibilities
Go Team!
  • Josh
  • Google API
  • Integrating everything together
  • User Registration
  • Katie
  • eBay API
  • Spiders
  • Data mining collection
  • Sean
  • TimelyBid website
  • Data mining algorithms
  • Database
Write a Comment
User Comments (0)