Title: Spectroscopic signatures of a saddle point
1Spectroscopic signatures of a saddle point
- Modelled on HCP as a perturbed spherical pendulum
2Spherical pendulum
P
C
?
H
3Outline
- Model Hamiltonian
- Properties of spherical pendulum states
- Classical trajectories of the coupled model
- Anharmonic resonances
- Polyad structure
- Rotation/vibrational dynamics of HCP bending
states - Extended RKR potential function
- Anomalous magnitudes of vibn/rotn parameters
- Summary
4Model Hamiltonian
5Quantum pendulum states
2.0
1.0
E/V0
Diagonalize in a spherical harmonic basis
0.0
-1.0
k
6Semiclassical pendulum states
Complete analytical solution in terms of Elliptic
integrals, which yields the following limiting
formulae for k0
7(No Transcript)
8Surfaces of section and periodic orbits
9Periodic orbit bifurcations
10Periodic orbit frequencies
11Polyad structure EltB
Inside Fermi res
Outside
Measured from lowest level of polyad
Mean polyad number np2vsvb
12Polyad structure 0ltElt2B
Vibrating states
Rotating states
13(No Transcript)
14Importance of resonance terms
?E
np
E
15HCP extended RKR bending potential
16HCP bend monodromy plot
17l doubling
18Vibration rotation constants
19Summary
- Classical and semiclassical methods used to
illuminate dynamics of HCP-like model - Classical bending frequency function and
Heisenberg matrix elements used to model
occurrence and strength of 1n resonances - RKR plus ab initio information used to determine
realistic HCP bending potential - Anomalously large vibn/rotn interaction
parameters explained and predicted
20Acknowledgements
- M P Jacobson (UCSF)
- C D Cooper (Oxford)
- UK EPSRC
References
- M P Jacobson and M S Child JCP 114, 250 (2001)
- M P Jacobson and M S Child JCP 114, 262 (2001)
- M P Jacobson and M S Child JPC 105, 2834 (2001)
- M S Child, M P Jacobson and C D Cooper JPC 105,
10791 (2001)