Optimizing the Film Matrix for a Fluorescence Based Oxygen Sensor Using PtII Octaethylporphine - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Optimizing the Film Matrix for a Fluorescence Based Oxygen Sensor Using PtII Octaethylporphine

Description:

Optimizing the Film Matrix for a Fluorescence Based Oxygen Sensor Using PtII Octaethylporphine – PowerPoint PPT presentation

Number of Views:85
Avg rating:3.0/5.0
Slides: 16
Provided by: gregd65
Category:

less

Transcript and Presenter's Notes

Title: Optimizing the Film Matrix for a Fluorescence Based Oxygen Sensor Using PtII Octaethylporphine


1
Optimizing the Film Matrix for a Fluorescence
Based Oxygen Sensor Using Pt(II) Octaethylporphine
  • Gregory Smith
  • Department of Biomedical Engineering, University
    of Texas, Austin, Texas 78712

2
Background
  • Fluorescent dyes used (RITC, Rhodamine, and PtOEP
  • Oxygen quenching
  • The sensor theory
  • The ideal film

3
Testing Apparatus
Spectrometer
Light Source (460nm LED)
Fiber optic cables
Flow in
Flow out
Sample to be tested
4
Flow Chamber
5
TEOS Solution Tests
6
TEOS Film Tests
7
PEG-DA Hydrogel Tests
8
E-6000 Adhesive Slides
9
E-6000 Adhesive Tests
10
E-6000 Adhesive Tests
11
PDMS Test
12
Conclusions
  • RITC is better than Rhodamine B
  • The trade off between signal strength and film
    thickness
  • The E-6000 Slides
  • The Ideal film is obtainable

13
Future Work
14
Acknowledgements
  • Louisiana Tech University
  • Departments of Biomedical Engineering and
    Chemistry
  • Dr. Sven Eklund
  • Dr. Steven Jones
  • Damien Davis
  • The NSF summer REU program

15
References
  • (1) Stein, E. W. Grant, P. S. Zhu, H. Mcshane,
    M. J. Microscale Enzymatic Optical Biosensors
    Using Mass Transport Limiting Nanofilms. 1.
    Fabrication and Characterization Using Glucose as
    a Model Analyte. Anal. Chem. 2007, 79, 1339-1348.
  • (2) McDonagh, C. MacCraith, B.D. McEvoy, A.K.
    Tailoring of Sol-Gel Films for Optical Sensing of
    Oxygen in Gas and Aqueous Phase. Anal. Chem.
    1998, 70, 45-50.
  • (3) Heo, J. Crooks, R. M. Microfluidic
    Biosensor Based of an Array of Hydrogel-Entrapped
    Enzymes. Anal. Chem. 2005, 77, 6643-6851.
  • (4) Zhu, H. Srivastava, R. Brown, J. Q.
    McShane, M. J. Combined Physical and Chemical
    Immobilization of Glucose Oxidase in Alginate
    Microspheres Improves Stability of Encapsulation
    and Activity. Bioconjugate Chem. 2005, 16,
    1451-1458.
  • (5) Revzin, A. Russell, R. J. Yadavalli, V. K.,
    Koh, W. Deister, C. Hile, D. D. Mellott, M.
    B. Pishko, M. V. Fabrication of Poly(ethylene
    glycol) Hydrogel Microstructures Using
    Photolithography. Langmuir 2001, 17, 5440-5447.
  • (6) Zhan, W. Seong, G. H. Crooks, R. M.
    Hydrogel-Based Microreactors as a Functional
    Component of Microfluidic Systems. Anal. Chem.
    2002, 74, 4647-4652.
  • (7) Brzoska, J. B. Azouz, I. B. Rondelez, F.
    Silanization of Solid Substrates A Step toward
    Reproducibility. Langmuir 1994, 10, 4367-4373

Questions?
Write a Comment
User Comments (0)
About PowerShow.com