MR Angiography basic techniques and principles - PowerPoint PPT Presentation

1 / 108
About This Presentation
Title:

MR Angiography basic techniques and principles

Description:

MR Angiography basic techniques and principles – PowerPoint PPT presentation

Number of Views:2323
Avg rating:3.0/5.0
Slides: 109
Provided by: lntanen
Category:

less

Transcript and Presenter's Notes

Title: MR Angiography basic techniques and principles


1
MR Angiographybasic techniques and principles
  • Lawrence N. Tanenbaum, M.D. FACR
  • New Jersey Neuroscience Institute-Seton Hall
    University
  • JFK Medical Center Edison Imaging
  • www.drtmasters.com drt_at_drtmasters.com
  • Edison, New Jersey

2
Time of Flight (TOF)
  • 2D, 3D
  • longitudinal magnetization difference MRA
  • flow related enhancement
  • challenges
  • saturation effects
  • dephasing due to complex motion

3
(No Transcript)
4
(No Transcript)
5
Saturation effectsMRA principles
  • progressive saturation of blood as it passes
    through slice/slab
  • more severe in (thick) 3D slab than (thin) 2D
    slice
  • more significant for TOF than PC
  • manifest as loss of signal with in plane flow on
    2D
  • limits the functional size and coverage of 3D
    slabs

6
Limiting saturationtechniques
  • MOTSA
  • Magnetization transfer
  • Variable flip angle (RAMP)

7
MOTSAMultiple Overlapping Thin Slice Acquisition
  • hybrid of 2D and 3D techniques
  • 3D
  • resistance to in-plane saturation
  • high resolution
  • short TE
  • stacking of thin slabs minimizes saturation and
    allows unlimited coverage

8
(No Transcript)
9
MRA brainaneurysm
  • vasc TOF SPGR
  • 14 / min / 20,16 kHz
  • 14 FOV, f AP
  • 1 mm / zip 0.5
  • 256 x 192
  • MOTSA 3 x 32, overlap 3
  • ramp IS
  • 1 nex, 429

10
MRA brainaneurysm 8 ch
  • vasc TOF SPGR
  • 15 / min / 20, 25 kHz
  • 18 FOV, f AP
  • 1 mm / zip 0.5
  • 448 x 192, ASSET x 2
  • MOTSA 4 x 32, overlap 3
  • ramp IS
  • 1 nex, 319

11
MRA brain 3T8 channel
  • vasc TOF SPGR
  • 14 / 2.3 / 20, 32 kHz
  • 18 FOV, f AP
  • 1 mm / zip 0.5
  • 512 x 224, ASSET x 2
  • MOTSA 4 x 32, overlap 3
  • ramp IS
  • 1 nex, 410

12
multislab 3D TOF 512 x 224
13
3D MOTSA TOF
14
3DTOF MRA neck
  • TR / min / 20, ramp I-S
  • 18 / 12 FOV, f RL
  • 224 x 128 1024 ZIP
  • 2 mm / 1mm spacing (ZIP)
  • 16 kHz, 1 nex
  • 20 pps overlap 4, 6 slabs
  • 412

15
Multislab 3DTOF
16
Magnetization transfer
  • brain has a higher fraction of bound water than
    blood
  • MT pulses selectively excite bound water
  • result
  • relatively selective saturation of brain relative
    to blood
  • improved suppression of background tissues
  • superior flow/vessel visualization

17
MRA brainstroke
  • vasc TOF SPGR
  • 30 / min / 25, 16 kHz
  • 16 FOV, f AP
  • 1.6 mm / zip 0.8
  • 256 x 160, 512Z
  • 50 partitions, 1 slab
  • MT, ramp IS
  • 1 nex, 349

18
MRA brainstroke 8 ch
  • vasc TOF SPGR
  • 26 / 2.0 / 25, 16 kHz
  • 18 FOV, f AP
  • 1.6 mm / zip 0.8
  • 448 x 192, ASSET x 2
  • 50 partitions, 1 slab
  • MT, ramp IS
  • 1 nex, 208

19
(No Transcript)
20
Variable flip angleRAMP, TONE
  • increase in flip angle across slab in direction
    of flow
  • use with MT or MOTSA to limit saturation effects
  • no change in TE,TR

21
Phase contrast (PC)
  • 3D, 2D
  • transverse magnetization difference MRA
  • velocity induced phase shifts
  • acquisition
  • set of GRE acquisitions with different bipolar
    gradients
  • subtraction leaves flow information
  • challenges
  • aliasing and signal loss due to improper VENC
  • dephasing due to complex motion

22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
Carotid occlusion
26
Comparison of conventional and MRA
27
fibromuscular dysplasia
28
fibromuscular dysplasia
29
Neurological applications
  • extracranial
  • symptomatic stenosis
  • ultrasound correlation and follow-up
  • intracranial
  • stenosis and occlusion
  • aneurysm
  • vascular lesions
  • sinus thrombosis

30
Conventional angiography
  • gold standard for vessel morphology
  • inappropriate for screening
  • invasive
  • small risk of morbidity and mortality
  • costly
  • does not evaluate parenchymal disease

31
Ultrasound
  • stenosis primarily via flow alteration
  • some morphologic information
  • non-invasive, relatively low cost (?)
  • does not evaluate parenchymal disease

32
Ultrasound
  • operator dependent
  • limited area amenable to study
  • degraded by calcified plaque
  • difficulty with tortuosity
  • severe stenosis may mimic occlusion or bilateral
    disease

33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
TOF MR angiography
  • physiological more than structural
  • contrast comes from blood movement
  • rapid, uniform flow best assessed
  • complex flow leads to signal loss, exaggeration
    of length and severity of stenosis

40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
Neurological applications
  • extracranial
  • symptomatic stenosis
  • ultrasound correlation and follow-up
  • intracranial
  • stenosis and occlusion
  • aneurysm
  • vascular lesions
  • sinus thrombosis

52
3D Conventional angiography
53
(No Transcript)
54
basilar stenosis
55
Intracranial aneurysm
  • aneurysms rupture in 18,000 NA per year
  • 50 die immediately
  • 50 of survivors die within 5 days
  • 50 of remainder suffer neurologic damage
  • only 12-15 with rupture emerge intact
  • surgery on unruptured aneurysm low
    morbidity/mortality

56
Intracranial aneurysmMRA screening
  • high risk patients
  • strong family history
  • polycystic kidney disease
  • aortic coarctation
  • fibromuscular disease
  • collagen vascular disease
  • sickle cell disease
  • MRI required

57
Intracranial aneurysmMRA role
  • DDx r/o aneurysm
  • evaluate / follow-up known aneurysm
  • acute SAH
  • urgent CT
  • conventional angio / CTA
  • MRA if conventional angio negative.

58
(No Transcript)
59
ophthalmic artery 3.5 mm aneurysm
60
3 wks s/p worst headache ever
right CN III Palsy pupil involved
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
1024 MRA
67
(No Transcript)
68
Intracranial aneurysmsMR angiography
  • 95 sensitivity, 100 specificity for detection
    of at least one 3 mm aneurysm
  • Ross AJNR 199011
  • No hemorrhage from aneurysm less than 3 mm
  • McCormick J Neurosurgery 197033
  • 99 of aneurysms associated with SAH occur within
    circle of Willis
  • Locksley, IAQSAH Cooperative Study 1969

69
New MRA techniques
  • high performance gradients
  • TE effects
  • advanced flow compensation
  • alternative rendering methods
  • interpolation (ZIP) techniques
  • Contrast Augmented MRA
  • gated TOF

3D EC TRICKS
70
Aneurysm vs. loop
71
Aneurysm vs. loop
72
Aneurysm vs. loop
73
(No Transcript)
74
TE 6.9
TE 2.9
75
TE 2.9
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
TE 4.8
TE 3.4
80
Double-triple IR FSEblack blood
  • first non slice selective IR pulse inverts all
    spins
  • second slice selective pulse re-inverts spins in
    slice
  • TI time set to null blood (BLAIR) from outside of
    slice
  • e.g. 650 msec for HR 60 bpm
  • third (ST)IR pulse used to null fat
  • TI 150
  • may increase conspicuity of acute MI

81
(No Transcript)
82
Arhythmigenic right ventricular dysplasia
83
dissection ascending aorta TwinSpeed
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
right atrial lipoma IRFSE ASSET Twin-E
90
Plaque imaging
Mt. Sinai Medical Center, New York, NY, USA
91
Plaque imaging
fse-xl TR/TE 2RR/45.3/Ef. 100x100x3mm
256x256x2NEX ETL 16 RBW 31.2kHz EG/NP/VB/SQ/BSP
Univ. Dept. of Radiology, Cambridge, UK
92
(No Transcript)
93
(No Transcript)
94
T2 FSE
GRE TOF
2ble IR
plaque characterization
95
(No Transcript)
96
Plaque imaging
390mm x 390mm x 3mm
100x100x3mm 256x256 ETL 24 ST 44hbs
Univ. Dept. of Radiology, Cambridge, UK
97
FIESTA
  • Fast Imaging Employing Steady-state Acquisition
  • Balanced SSFP / true FISP
  • balanced gradients rephase / refocus transverse
    magnetization (maintain phase coherence) at end
    of TR interval
  • SI proportional T2/T1 for very short TR

98
FIESTA
99
dissection ascending aorta TwinSpeed
100
dissection ascending aorta TwinSpeed
101
Aortic dissection
102
FIESTA
103
(No Transcript)
104
Hypertrophic cardiomyopathy
Johns Hopkins U
105
FIESTA
106
Mitral regurgitation
Valvular detail
Zurich Hospital
107
(No Transcript)
108
(No Transcript)
109
JFK Medical Center
Write a Comment
User Comments (0)
About PowerShow.com