Title: MR Angiography basic techniques and principles
1MR Angiographybasic techniques and principles
- Lawrence N. Tanenbaum, M.D. FACR
- New Jersey Neuroscience Institute-Seton Hall
University - JFK Medical Center Edison Imaging
- www.drtmasters.com drt_at_drtmasters.com
- Edison, New Jersey
2Time of Flight (TOF)
- 2D, 3D
- longitudinal magnetization difference MRA
- flow related enhancement
- challenges
- saturation effects
- dephasing due to complex motion
3(No Transcript)
4(No Transcript)
5Saturation effectsMRA principles
- progressive saturation of blood as it passes
through slice/slab - more severe in (thick) 3D slab than (thin) 2D
slice - more significant for TOF than PC
- manifest as loss of signal with in plane flow on
2D - limits the functional size and coverage of 3D
slabs
6Limiting saturationtechniques
- MOTSA
- Magnetization transfer
- Variable flip angle (RAMP)
7MOTSAMultiple Overlapping Thin Slice Acquisition
- hybrid of 2D and 3D techniques
- 3D
- resistance to in-plane saturation
- high resolution
- short TE
- stacking of thin slabs minimizes saturation and
allows unlimited coverage
8(No Transcript)
9MRA brainaneurysm
- vasc TOF SPGR
- 14 / min / 20,16 kHz
- 14 FOV, f AP
- 1 mm / zip 0.5
- 256 x 192
- MOTSA 3 x 32, overlap 3
- ramp IS
- 1 nex, 429
10MRA brainaneurysm 8 ch
- vasc TOF SPGR
- 15 / min / 20, 25 kHz
- 18 FOV, f AP
- 1 mm / zip 0.5
- 448 x 192, ASSET x 2
- MOTSA 4 x 32, overlap 3
- ramp IS
- 1 nex, 319
11MRA brain 3T8 channel
- vasc TOF SPGR
- 14 / 2.3 / 20, 32 kHz
- 18 FOV, f AP
- 1 mm / zip 0.5
- 512 x 224, ASSET x 2
- MOTSA 4 x 32, overlap 3
- ramp IS
- 1 nex, 410
12multislab 3D TOF 512 x 224
133D MOTSA TOF
143DTOF MRA neck
- TR / min / 20, ramp I-S
- 18 / 12 FOV, f RL
- 224 x 128 1024 ZIP
- 2 mm / 1mm spacing (ZIP)
- 16 kHz, 1 nex
- 20 pps overlap 4, 6 slabs
- 412
15Multislab 3DTOF
16Magnetization transfer
- brain has a higher fraction of bound water than
blood - MT pulses selectively excite bound water
- result
- relatively selective saturation of brain relative
to blood - improved suppression of background tissues
- superior flow/vessel visualization
17MRA brainstroke
- vasc TOF SPGR
- 30 / min / 25, 16 kHz
- 16 FOV, f AP
- 1.6 mm / zip 0.8
- 256 x 160, 512Z
- 50 partitions, 1 slab
- MT, ramp IS
- 1 nex, 349
18MRA brainstroke 8 ch
- vasc TOF SPGR
- 26 / 2.0 / 25, 16 kHz
- 18 FOV, f AP
- 1.6 mm / zip 0.8
- 448 x 192, ASSET x 2
- 50 partitions, 1 slab
- MT, ramp IS
- 1 nex, 208
19(No Transcript)
20Variable flip angleRAMP, TONE
- increase in flip angle across slab in direction
of flow - use with MT or MOTSA to limit saturation effects
- no change in TE,TR
21Phase contrast (PC)
- 3D, 2D
- transverse magnetization difference MRA
- velocity induced phase shifts
- acquisition
- set of GRE acquisitions with different bipolar
gradients - subtraction leaves flow information
- challenges
- aliasing and signal loss due to improper VENC
- dephasing due to complex motion
22(No Transcript)
23(No Transcript)
24(No Transcript)
25Carotid occlusion
26Comparison of conventional and MRA
27fibromuscular dysplasia
28fibromuscular dysplasia
29Neurological applications
- extracranial
- symptomatic stenosis
- ultrasound correlation and follow-up
- intracranial
- stenosis and occlusion
- aneurysm
- vascular lesions
- sinus thrombosis
30Conventional angiography
- gold standard for vessel morphology
- inappropriate for screening
- invasive
- small risk of morbidity and mortality
- costly
- does not evaluate parenchymal disease
31Ultrasound
- stenosis primarily via flow alteration
- some morphologic information
- non-invasive, relatively low cost (?)
- does not evaluate parenchymal disease
32Ultrasound
- operator dependent
- limited area amenable to study
- degraded by calcified plaque
- difficulty with tortuosity
- severe stenosis may mimic occlusion or bilateral
disease
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39TOF MR angiography
- physiological more than structural
- contrast comes from blood movement
- rapid, uniform flow best assessed
- complex flow leads to signal loss, exaggeration
of length and severity of stenosis
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51Neurological applications
- extracranial
- symptomatic stenosis
- ultrasound correlation and follow-up
- intracranial
- stenosis and occlusion
- aneurysm
- vascular lesions
- sinus thrombosis
523D Conventional angiography
53(No Transcript)
54basilar stenosis
55Intracranial aneurysm
- aneurysms rupture in 18,000 NA per year
- 50 die immediately
- 50 of survivors die within 5 days
- 50 of remainder suffer neurologic damage
- only 12-15 with rupture emerge intact
- surgery on unruptured aneurysm low
morbidity/mortality
56Intracranial aneurysmMRA screening
- high risk patients
- strong family history
- polycystic kidney disease
- aortic coarctation
- fibromuscular disease
- collagen vascular disease
- sickle cell disease
- MRI required
57Intracranial aneurysmMRA role
- DDx r/o aneurysm
- evaluate / follow-up known aneurysm
- acute SAH
- urgent CT
- conventional angio / CTA
- MRA if conventional angio negative.
58(No Transcript)
59ophthalmic artery 3.5 mm aneurysm
603 wks s/p worst headache ever
right CN III Palsy pupil involved
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
661024 MRA
67(No Transcript)
68Intracranial aneurysmsMR angiography
- 95 sensitivity, 100 specificity for detection
of at least one 3 mm aneurysm - Ross AJNR 199011
- No hemorrhage from aneurysm less than 3 mm
- McCormick J Neurosurgery 197033
- 99 of aneurysms associated with SAH occur within
circle of Willis - Locksley, IAQSAH Cooperative Study 1969
69New MRA techniques
- high performance gradients
- TE effects
- advanced flow compensation
- alternative rendering methods
- interpolation (ZIP) techniques
- Contrast Augmented MRA
- gated TOF
3D EC TRICKS
70Aneurysm vs. loop
71Aneurysm vs. loop
72Aneurysm vs. loop
73(No Transcript)
74TE 6.9
TE 2.9
75TE 2.9
76(No Transcript)
77(No Transcript)
78(No Transcript)
79TE 4.8
TE 3.4
80Double-triple IR FSEblack blood
- first non slice selective IR pulse inverts all
spins - second slice selective pulse re-inverts spins in
slice - TI time set to null blood (BLAIR) from outside of
slice - e.g. 650 msec for HR 60 bpm
- third (ST)IR pulse used to null fat
- TI 150
- may increase conspicuity of acute MI
81(No Transcript)
82Arhythmigenic right ventricular dysplasia
83dissection ascending aorta TwinSpeed
84(No Transcript)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88(No Transcript)
89right atrial lipoma IRFSE ASSET Twin-E
90Plaque imaging
Mt. Sinai Medical Center, New York, NY, USA
91Plaque imaging
fse-xl TR/TE 2RR/45.3/Ef. 100x100x3mm
256x256x2NEX ETL 16 RBW 31.2kHz EG/NP/VB/SQ/BSP
Univ. Dept. of Radiology, Cambridge, UK
92(No Transcript)
93(No Transcript)
94T2 FSE
GRE TOF
2ble IR
plaque characterization
95(No Transcript)
96Plaque imaging
390mm x 390mm x 3mm
100x100x3mm 256x256 ETL 24 ST 44hbs
Univ. Dept. of Radiology, Cambridge, UK
97FIESTA
- Fast Imaging Employing Steady-state Acquisition
- Balanced SSFP / true FISP
- balanced gradients rephase / refocus transverse
magnetization (maintain phase coherence) at end
of TR interval - SI proportional T2/T1 for very short TR
98FIESTA
99dissection ascending aorta TwinSpeed
100dissection ascending aorta TwinSpeed
101Aortic dissection
102FIESTA
103(No Transcript)
104Hypertrophic cardiomyopathy
Johns Hopkins U
105FIESTA
106Mitral regurgitation
Valvular detail
Zurich Hospital
107(No Transcript)
108(No Transcript)
109JFK Medical Center