Electrons - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Electrons

Description:

Because electrons within the sublevels occupy specific cloud-shaped regions, the ... sublevels within that principal energy level. d Orbitals ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 37
Provided by: WendyandA8
Category:

less

Transcript and Presenter's Notes

Title: Electrons


1
Electrons Atoms
2
Quantum Mechanical Model
  • Electrons probabilities vs. points of matter
  • The probability of finding an electron within a
    space can be represented by a fuzzy cloud. These
    shapes are where we believe the electrons will
    live 90 of the time.

3
ENERGY LEVELS
  • The model designates energy levels of electrons
    by principal quantum numbers. Each quantum
    number refers to a major or principal energy
    level in the atom (n1,2,3,4..)

4
ENERGY SUBLEVELS
  • Within each principal energy level, the electrons
    occupy energy sublevels. (They are not ORBITS
    because the electron is not confined to a fixed
    circular path.)
  • Because electrons within the sublevels occupy
    specific cloud-shaped regions, the cloud shapes
    are called atomic orbitals. The atomic orbitals
    are denoted by letters (s, p, d, f, . . . .)

5
QM Electron Structure
6
Key Things to Remember
  • At most, only 2 electrons exist in any single
    orbital.
  • An orbital within a higher energy level is
    larger than the same type of orbital for a lower
    energy level (i.e. the 3s orbital is larger than
    the 2s orbital which is larger than the 1s
    orbital).
  • Electrons in higher energy levels are, on
    average, further from the nucleus.
  • The principal quantum number (energy level)
  • sublevels within that principal energy level.

7
(No Transcript)
8
(No Transcript)
9
d Orbitals
http//www.uky.edu/holler/html/orbitals_2.html
10
f Orbitals
http//www.uky.edu/holler/html/orbitals_2.html
11
d and f orbitals more difficult to visualize
  • Link to site with simulation of various orbital
    shapes University of Kentucky
  • Link to the Orbitron Gallery. University of
    Sheffield

12
Electron Energy and Orbitals
  • In general, electrons in orbitals for higher
    levels have more energy.
  • Orbital energy by type f gt d gt p gt s
  • However, as the atom gets larger ( of electrons
    increases), there is some overlap between
    orbitals and principle energy levels.

13
Electron Configurations
  • The way in which electrons are arranged around
    the nuclei of atoms are called electron
    configurations. Three rules tell you how to find
    the configurations of electrons

14
Electron Configuration Rules
  • Aufbau principle Electrons enter orbitals of
    lowest energy first.
  • Pauli exclusion principle An atomic orbital may
    describe at most two electrons. To occupy the
    same orbital, the two electrons must have
    opposite spins. (shown as arrows)
  • Hunds rule When electrons occupy orbitals of
    equal energy, one electron enters each orbital
    until all the orbitals contain one electron with
    parallel spins. Second electrons then add to
    each orbital so that their spins are opposite
    those of the first electrons.

15
(No Transcript)
16
Aufbau Diagrams useful when remembering the
order in which orbitals fill
17
Valence Electrons
  • The ones we most care about
  • Largely determine the chemical nature of the atom
    (what is it likely to react with)
  • They are the electrons in the highest principle
    energy (quantum) level only.
  • Other electrons do have an impact to chemical
    character of the atom just not as much

18
EXAMPLE 1 Determine the electron configuration
of silicon (Si), atomic 14
  • Answer 1s22s22p63s23p2
  • Alternatively He 2s22p63s23p2
  • Alternatively Ne 3s23p2
  • Valence Electrons 4 in the 3rd principle
    energy level

19
EXAMPLE 2 Determine the electron configuration
of calcium (Ca), atomic 20
  • Answer 1s22s22p63s23p64s2
  • Alternatively Ar 4s2

20
EXAMPLE 3 Determine the electron configuration
of silver (Ag), atomic 47
  • Answer 1s22s22p63s23p64s23d104p65s24d9
  • Alternatively Kr 5s24d9

21
Periodic Table vs. ConfigurationsLast electron
filling . . .
http//www.uky.edu/holler/html/orbitals_2.html
22
(No Transcript)
23
Aufbau Exceptions Cr Cu
  • For Chromium
  • Aufbau 1s22s22p63s23p63d44s2
  • Actual 1s22s22p63s23p63d54s1
  • One 4s electron goes to 3d to half fill 3d
    sub-level
  • For Copper
  • Aufbau 1s22s22p63s23p63d94s2
  • Actual 1s22s22p63s23p63d104s1
  • One 4s electron goes to 3d to complete 3d
    sub-level
  • In these cases, completely filled sub-level has
    less energy than a half-filled, which has less
    energy than a full s orbital and less than
    half-filled d sub-level.

24
Electron Configurations and the Periodic table
25
The Row (or Period)
  • The row (or period) number that the element
    occupies is the same as the highest principle
    quantum level, n, occupied by the highest
    electrons.

26
  • Periods Are arranged horizontally across the
    periodic table (rows 1-7)
  • Example Aluminum has its highest energy
    electrons in the 3rd principle quantum level.
    Aluminum is in the 3rd row or period

Al 1s2 2s2 2p6 3s2 3p1
Al
6th Period
27
Sections or Blocks
  • Certain sections or blocks of the periodic table
    correspond to the energy sublevels occupied by
    the highest energy electrons.

28
Example Al has its highest energy electrons in
a p sublevel. Al is in the p section with other
atoms with their highest energy e- also in a p
sublevel.
H 1s1
He 1s2
F 2p5
  • B
  • 2p1

Be 2s2
B 2p1
C 2p2
N 2p3
Ne 2p6
Li 2s1
O 2p4
Na 3s1
Mg 3s2
Cl 3p5
Al 3p1
Si 3p2
P 3p3
S 3p4
Ar 3p6
K 4s1
Ca 4s2
Zn 3d10
As 4p3
Be 4p5
Sc 3d1
Ti 3d2
V 3d3
Cr 4s13d5
Mn 3d5
Fe 3d6
Co 3d7
Ga 4p1
Ge 4p2
Se 4p4
Kr 4p6
Ni 3d8
Cu 4s13d10
Sr 5s2
Rb 5s1
Nb 4d3
Mo 5s14d5
Ru 4d6
Rh 4d7
Sn 5p2
I 5p5
Xe 5p6
Cd 4d10
Zr 4d2
Tc 4d5
In 5p1
Sb 5p3
Te 5p4
Y 4d1
Ni 4d8
Ag 5s14d10
Cs 6s1
Hf 5d2
Ta 5d3
W 6s15d5
Re 5d5
Os 5d6
Ir 5d7
At 6p5
Rn 6p6
La 5d1
Ni 5d8
Ba 6s2
Tl 6p1
Pb 6p2
Bi 6p3
Po 6p4
Hg 5d10
Au 6s15d10
Mt 6d7
Fr 7s1
Bh 6d5
Hs 6d6
Ra 7s2
Rf 6d2
Db 6d3
Sg 7s16d5
Ac 6d1
29
Groups
  • The number of columns or groups in a sublevel
    block is the same as the total number of
    electrons that can occupy that sublevel

30
Example There are 6 columns in the p block of
elements. A p sublevel can contain 6 total
electrons
columns
6
1
2
3
4
5
H 1s1
He 1s2
F 2p5
  • B
  • 2p1

Be 2s2
B 2p1
C 2p2
N 2p3
Ne 2p6
Li 2s1
O 2p4
Na 3s1
Mg 3s2
Cl 3p5
Al 3p1
Si 3p2
P 3p3
S 3p4
Ar 3p6
K 4s1
Ca 4s2
Zn 3d10
As 4p3
Be 4p5
Sc 3d1
Ti 3d2
V 3d3
Cr 4s13d5
Mn 3d5
Fe 3d6
Co 3d7
Ga 4p1
Ge 4p2
Se 4p4
Kr 4p6
Ni 3d8
Cu 4s13d10
Sr 5s2
Rb 5s1
Nb 4d3
Mo 5s14d5
Ru 4d6
Rh 4d7
Sn 5p2
I 5p5
Xe 5p6
Cd 4d10
Zr 4d2
Tc 4d5
In 5p1
Sb 5p3
Te 5p4
Y 4d1
Ni 4d8
Ag 5s14d10
Cs 6s1
Hf 5d2
Ta 5d3
W 6s15d5
Re 5d5
Os 5d6
Ir 5d7
At 6p5
Rn 6p6
La 5d1
Ni 5d8
Ba 6s2
Tl 6p1
Pb 6p2
Bi 6p3
Po 6p4
Hg 5d10
Au 6s15d10
Mt 6d7
Fr 7s1
Bh 6d5
Hs 6d6
Ra 7s2
Rf 6d2
Db 6d3
Sg 7s16d5
Ac 6d1
31
  • The column an element occupies in a sublevel
    block is the same as the number of electrons in
    that sublevel.

32
Example Al is in the first column of the p
block on the periodic table. Al has one
electron in the 3p sublevel.
H 1s1
He 1s2
F 2p5
  • B
  • 2p1

Be 2s2
B 2p1
C 2p2
N 2p3
Ne 2p6
Li 2s1
O 2p4
Na 3s1
Mg 3s2
Cl 3p5
Si 3p2
P 3p3
S 3p4
Ar 3p6
K 4s1
Ca 4s2
Zn 3d10
As 4p3
Be 4p5
Sc 3d1
Ti 3d2
V 3d3
Cr 4s13d5
Mn 3d5
Fe 3d6
Co 3d7
Ga 4p1
Ge 4p2
Se 4p4
Kr 4p6
Ni 3d8
Cu 4s13d10
Sr 5s2
Rb 5s1
Nb 4d3
Mo 5s14d5
Ru 4d6
Rh 4d7
Sn 5p2
I 5p5
Xe 5p6
Cd 4d10
Zr 4d2
Tc 4d5
In 5p1
Sb 5p3
Te 5p4
Y 4d1
Ni 4d8
Ag 5s14d10
Cs 6s1
Hf 5d2
Ta 5d3
W 6s15d5
Re 5d5
Os 5d6
Ir 5d7
At 6p5
Rn 6p6
La 5d1
Ni 5d8
Ba 6s2
Tl 6p1
Pb 6p2
Bi 6p3
Po 6p4
Hg 5d10
Au 6s15d10
Mt 6d7
Fr 7s1
Bh 6d5
Hs 6d6
Ra 7s2
Rf 6d2
Db 6d3
Sg 7s16d5
Ac 6d1
33
Relationships
  • These relationships mean that we can read the
    electron configuration for Aluminum directly from
    the periodic table.

34
Example Aluminum is in the 3rd row, the p
block, and the first column of that block. So
Als highest energy electron is 3p1 electron
1
H 1s1
He 1s2
F 2p5
  • B
  • 2p1

Be 2s2
B 2p1
C 2p2
N 2p3
Ne 2p6
Li 2s1
O 2p4
Na 3s1
Mg 3s2
Cl 3p5
Al 3p1
Si 3p2
P 3p3
S 3p4
Ar 3p6
K 4s1
Ca 4s2
Zn 3d10
As 4p3
Be 4p5
Sc 3d1
Ti 3d2
V 3d3
Cr 4s13d5
Mn 3d5
Fe 3d6
Co 3d7
Ga 4p1
Ge 4p2
Se 4p4
Kr 4p6
Ni 3d8
Cu 4s13d10
Sr 5s2
Rb 5s1
Nb 4d3
Mo 5s14d5
Ru 4d6
Rh 4d7
Sn 5p2
I 5p5
Xe 5p6
Cd 4d10
Zr 4d2
Tc 4d5
In 5p1
Sb 5p3
Te 5p4
Y 4d1
Ni 4d8
Ag 5s14d10
Cs 6s1
Hf 5d2
Ta 5d3
W 6s15d5
Re 5d5
Os 5d6
Ir 5d7
At 6p5
Rn 6p6
La 5d1
Ni 5d8
Ba 6s2
Tl 6p1
Pb 6p2
Bi 6p3
Po 6p4
Hg 5d10
Au 6s15d10
Mt 6d7
Fr 7s1
Bh 6d5
Hs 6d6
Ra 7s2
Rf 6d2
Db 6d3
Sg 7s16d5
Ac 6d1
35
Other Relationships
36
For elements in the d sublevel block, the row
number is one greater than the principle quantum
number for d sublevel electrons.
d block
H 1s1
He 1s2
F 2p5
  • B
  • 2p1

Be 2s2
B 2p1
C 2p2
N 2p3
Ne 2p6
Li 2s1
O 2p4
Na 3s1
Mg 3s2
Cl 3p5
Al 3p1
Si 3p2
P 3p3
S 3p4
Ar 3p6
K 4s1
Ca 4s2
Zn 3d10
As 4p3
Be 4p5
Sc 3d1
Ti 3d2
V 3d3
Cr 4s13d5
Mn 3d5
Fe 3d6
Co 3d7
Ga 4p1
Ge 4p2
Se 4p4
Kr 4p6
Ni 3d8
Cu 4s13d10
Sr 5s2
Rb 5s1
Nb 4d3
Mo 5s14d5
Ru 4d6
Rh 4d7
Sn 5p2
I 5p5
Xe 5p6
Cd 4d10
Zr 4d2
Tc 4d5
In 5p1
Sb 5p3
Te 5p4
Y 4d1
Ni 4d8
Ag 5s14d10
Cs 6s1
Hf 5d2
Ta 5d3
W 6s15d5
Re 5d5
Os 5d6
Ir 5d7
At 6p5
Rn 6p6
La 5d1
Ni 5d8
Ba 6s2
Tl 6p1
Pb 6p2
Bi 6p3
Po 6p4
Hg 5d10
Au 6s15d10
Mt 6d7
Fr 7s1
Bh 6d5
Hs 6d6
Ra 7s2
Rf 6d2
Db 6d3
Sg 7s16d5
Ac 6d1
Write a Comment
User Comments (0)
About PowerShow.com