Title: Modeling Environmental Systems at the Landscape Scale
1Modeling Environmental Systems at the Landscape
Scale
- Todd Lookingbill
- Landscape Analysis and Quantitative Ecology
- March 2, 2005
2ObjectiveVegetation Pattern
- Background - Gradient analysis
- Sample vegetation (and environment)
-
-
3ObjectiveVegetation Pattern
- Background - Gradient analysis
- Sample vegetation (and environment)
- Array samples according to species compositional
trends -
-
(Whittaker 1956)
4ObjectiveVegetation Pattern
- Background - Gradient analysis
- Sample vegetation (and environment)
- Array samples according to species compositional
trends - Relate these trends to environment
-
-
(Whittaker 1960)
5ObjectiveVegetation Pattern
- Background - Gradient analysis
- Virtually always find
- temperature trend (usually as elevation)
- moisture trend (as local terrain)
- (sometimes) soils or parent material
- Environmental proxies to leverage sparse data
on actual abiotic distributions
6Objective modeling the patterns (spatial) of
resource and direct environmental gradients
vegetation pattern
temp. moisture fertility
7Terminology Review
- A model is a description of a system
- System a collection of interrelated objects
(Haefner 1996) - Model types
- ___________________
- ___________________
- ___________________
- ___________________
8vegetation pattern
temp. moisture fertility
93 Models
- Conceptual model of nutrient systems
- Empirical statistical model of atmospheric
systems - Process simulation model of hydrospheric systems
- Leading towards Modeling environmental-plant
relationships
10Soil Development Conceptual Model
(Jenny 1941)
11Hillslope Scale Soils Model
Catena
coarser less OM less water
shallower on steeper slope (deeper on flat tops
and bottoms)
water table
more clay more OM more water
12Watershed Scale Soils Model
(Likens Bormann 1995)
13Small Watershed Approach
Outputs
Inputs
14The Black Box Model
From where does the additional 11.7 kg/ha/yr Ca2
come? Are there any internal reservoirs that
increase on an annual basis?
- Output consistentlygreater than input
- 1963-1974
- Input Output Net Loss
- 2.2 13.9 -11.7
- kg/ha/yr
(Bormann Likens 1977)
15Opening up the Black Box
16- How have the things changed over the past 30
years? - Rain is becoming less acidic. Resulting in
decrease in hydrologic losses of Ca. - Input Output Net Loss
- 108 684 -576 1963-1974
- 44 351 -307 1992-1993
- eq/ha/yr
- Forest is maturing and acquiring less Ca on an
annual basis.
17- Important attributes of HBEF watersheds
- Long-Term Record
18Temperature
- ___________________
- ___________________
- ___________________
- ___________________
- ___________________
19Landscape-scale temperature
20Data are sparse and biased
21H.J. Andrews Experimental Forest
22Sample Design
HJA Stratified Approach within Watersheds
Portable Microloggers
23Temperature ModelRegression Approach
- Begin with regressed lapse rates
- Fine-tune as data allow
- correct for radiation load Taspect
- (Ho maximum)
- correct for distance to stream/water
- (Ho minimum)
24Radiation ProxyTransformed Aspect
0/360
- Aspect ranges 0-360, with 0 360 degrees
- TAspect -cos(45 aspect)
- SW 1 NE -1 NW SE 0
90
270
180
(Beers et al. 1966)
25Temperature Regression Models
26Spatially ImplicitRegression Models
Tmax
Tave ?0 - ?1 Elevation ?2 ln(dstrm) ?3
Radiation ?
Tmin
(Lookingbill Urban 2003)
27Moisture
28Catchment Hydrology Conceptual Model
Inputs/outputs
Watershed Hillslopes Patches Gridcells
?Storage Inputs Outputs
Regulators?
29Soil Water Regulators
(Landscape Scale)
- ___________________
- ___________________
- ___________________
- ___________________
30Potential Soil Water Regulators
31Drainage Indices
- Local curvature indices (convex, concave)
- Convexity rate of change in slope
- profile curvature (down slope)
- plan curvature (across slope)
- inverse concavity
- units degrees per unit distance
32Profile curvature
convex
concave
Plan curvature (contour line)
33Drainage Indices
- TCI ln (A / tanß)
- A upslope contributing area calculated from
flow accumulation ( of cells x area of cells) - ß slope in degrees
- takes on high values for convergence zones, low
values for divergent ridges - basis for Topmodel
(Beven Kirkby 1979)
34TCI
A
z
B
A
A high slope, low A, low W B low slope, high
A, high W
B
35Drainage Indices
- Topographic Relative Moisture Index (TRMI)
- Summed scalar index
- Aspect
- Slope
- Plan curvature
- Profile curvature
- Relative slope position
(Parker 1982)
36Synoptic Sampling of Soil Water Content
Gravimetric Sampling
Time Domain Reflectometry
37Regression Models
- Response Variables
- Surface soil moisture (0-20 cm)
- Deep soil moisture (80-100 cm)
- Explanatory Variables
- Elevation
- TAspect
- Slope
- Dstrm
- TCI
- Radiation
38Regression Models
- Shallow Soil Moisture (0-20 cm)
- y ?0 - ?1 Dstrm ?2 Elev - ?3 PRRsummer
- R2 0.54 (p ltlt 0.001)
- Deep Soil Moisture (80-100 cm)
- y ?0 - ?1 TCI ?2 Elev
- R2 0.35 (p0.03)
(Lookingbill Urban 2004)
39DynamicProcesses
Summer
Winter
40Dynamic Process Simulation Models
(Band et al. 1991, 1993)
41Dynamic Formulation
- Climate parameters
- maxT, minT, and ppt from HQ met station 1999-July
4, 2001 - scale base station T and ppt to appropriate
elevation using climate submodel - modeled VPD, tRad, and Rad attenuation
- Soil parameters
- Hydraulic conductivity 90.0 m/d
- Theta (sat) 0.45
- Theta (dry) 0.05
- Psi (min) -150 m
- Soil structure parameter 1.01
- Capillary length scale 0.05
- Most change permitted per permutation 0.5
- 11 nodes from 0 - 2.0 m
- Initial soil moisture 10
- Vegetation parameters
- albedo canopy 0.15
- albedo soil 0.29
- canopy interception coefficient 0.0002
- canopy light extinction coefficient -0.48
- max canopy conductance 0.0016
- slope of vpd-cc curve 0.01
- max plant avail soil water potential -140 m
- max plant rooting depth 2.0 m
- aerodynamic resistence plant canopy 30
- aerodynamic resistence soil surface 70
- LAI 6.0
42Summary
vegetation pattern
nutrients temp. moisture
43CART Model ofVegetation Pattern
44NMS Model of Vegetation Pattern
45Primary References
- Gradient Analysis
- Whittaker, R.H. 1956. Vegetation of the Great
Smoky Mountains. Ecological Monographs 261-80. - Whittaker, R.H. 1960. Vegetation of the Siskiyou
Mountains, Oregon and California. Ecological
Monographs 30279-338. - Nutrient Conceptual Models
- Likens, G.E. and F.H. Bormann. 1995.
Biogeochemistry of a Forested Ecosystem.
Springer-Verlag, New York. - Temperature Regression Models
- Lookingbill, T. and D. Urban. 2003. Spatial
estimation of air temperature differences for
landscape-scale studies in montane environments.
Agricultural and Forest Meteorology 114141-151. - Beers, T.W., P.E. Dress and L.C. Wensel. 1966.
Aspect transformation in site productivity
research. Journal of Forestry 64691-692.
46Soil Moisture
- Drainage Indices
- Beven, K.J. and M.J. Kirkby. 1979. A physically
based, variable contributing area model of basin
hydrology. Hydrologic Science Bulletin 2443-69. - Parker, A.J. 1982. The topographic relative
moisture index an approach to soil-moisture
assessment in mountain terrain. Physical
Geography 3160-168. - Regression Models
- Lookingbill, T. and D. Urban. 2004. An empirical
approach towards improved spatial estimates of
soil moisture for vegetation analysis. Landscape
Ecology 19417-433. - Process Simulation Models
- Band, L.E., D.L. Peterson, S.W. Running, J.
Coughlan, R. Lammers, J. Dungan and R. Nemani.
1991. Forest ecosystem processes at the watershed
scale basis for distributed simulation.
Ecological Modelling 56171-196. - Band, L.E., P. Patterson, R. Nemani and S.W.
Running. 1993. Forest ecosystem processes at the
watershed scale incorporating hillslope
hydrology. Agricultural and Forest Meteorology
6393-126.