Flare Thermal Energy - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Flare Thermal Energy

Description:

... obtain temperature (T in degrees K) and emission measure (EM) ... Tmin = TGOES 1.4 keV (16 MK) EM (Tmin to Tmax) 2 1049 cm-3. RHESSI Area (A) 9 103 arcsec2 ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:4.0/5.0
Slides: 26
Provided by: brianr9
Category:

less

Transcript and Presenter's Notes

Title: Flare Thermal Energy


1
Flare Thermal Energy
  • Brian R. Dennis
  • NASA GSFC
  • RHESSI SOHO - TRACE Workshop
  • 8 11 December, 2004

2
Flare Thermal Energy
  • Objective
  • Determine thermal energy vs. time during flare.
  • Estimate total thermal energy of flare.
  • Simple Method
  • Thermal energy at time of soft X-ray peak
  • Assume a single temperature
  • Advanced Methods
  • Allow multi-temperature plasma
  • Allow for conductive cooling
  • Allow for radiative cooling
  • Add thermal energy input during decay phase

3
Thermal Flare Energy
  • Simple Method
  • Assume a single temperature plasma.
  • Ignore cooling during impulsive phase and heating
    afterwards.
  • Use GOES fluxes at time of peak soft X-ray
    emission to obtain temperature (T in degrees K)
    and emission measure (EM).
  • Use RHESSI 6 12 keV image at same time to
    obtain a volume V A3/2
  • Assume 100 filling factor.
  • Thermal energy, Uth 3nkT 4.14x10-16 (EM
    V)1/2 T ergs

4
21 April 2002
5
GOES Temperature Emission Measure
6
RHESSI Light Curve
7
RHESSI Image (6 12 keV)
Area inside50 contour8576 arcsec2 Area
inside70 contour 3056 arcsec2
8
RHESSI Images
9
Peak Thermal Energy
  • GOES Soft X-ray Peak - 21 April 2002
  • Time 0145 UT
  • Temperature (T) 16 MK
  • Emission Measure (EM) 2 1050 cm-3
  • RHESSI Area (A) 9 103 arcsec2
  • (inside 50 contour, 6-12 keV at 0130 UT)
  • Volume (V A3/2) 3 1029 cm3
  • Density (EM/V)1/2 3 1010 cm-3
  • Thermal Energy (Uth) 5 1031 ergs
  • (Eth 4.14 x 10-16 (EM V)1/2 T ergs)

10
RHESSI Spectra - 21 April 2002
11
Advanced Method
  • Allow multithermal plasma
  • Assume DEM Q T-a cm-3 keV-1
  • Fit RHESSI spectra to multithermal power-law
    function.
  • Calculate thermal energy for Tmin TGOES
  • Quote thermal energy at peak of RHESSI flux.

12
RHESSI Spectral FitsMultithermal Power-law
13
Peak Thermal Energy
  • RHESSI Soft X-ray Peak - 21 April 2002
  • Time 0130 UT
  • ? (DEM Q T-?) 6.0
  • Tmin TGOES 1.4 keV (16 MK)
  • EM (Tmin to Tmax) 2 1049 cm-3
  • RHESSI Area (A) 9 103 arcsec2
  • (inside 50 contour, 6-12 keV at 0130 UT)
  • Volume, V A3/2 3 1029 cm3
  • Density, n (EM/V)1/2 0.9 1010 cm-3
  • Thermal Energy (Uth) 23 1030 ergs
  • (Uth 3 k/n ?DEM T dT ergs)
  • (for density independent of T)

14
23 July 2002
15
GOES Temperature Emission Measure
16
RHESSI Light Curve
17
RHESSI Image (6 12 keV)
Area inside50 contour244 arcsec2 Area
inside70 contour 115 arcsec2
18
RHESSI Images 23 July, 2002
19
PIXON Images23 July 2002
20
Peak Thermal Energy
  • GOES Soft X-ray Peak - 23 July 2002
  • Time 0035 UT
  • Temperature (T) 22 MK
  • Emission Measure (EM) 3.5 1050 cm-3
  • RHESSI Area (A) 2.4 102 arcsec2
  • (inside 50 contour, 6-12 keV at 0035 UT)
  • Volume (V A3/2) 1.4 1027 cm3
  • Density (EM/V)1/2 5 1011 cm-3
  • Thermal Energy (Uth) 7 1030 ergs
  • (Eth 4.14 x 10-16 (EM V)1/2 T ergs)

21
Thermal Flare Energy
  • More Advanced Method (Veronig et al.)
  • Assume a single temperature plasma.
  • Include conductive (Lcond) and radiative (Lrad)
    cooling losses.
  • Include estimated gravitational (Ugravity) and
    kinetic (Ukinetic) plasma energies.
  • Include heating after impulsive phase.
  • Use GOES spectra throughout flare to obtain
    temperature T and emission measure EM as
    functions of time.
  • Estimate volume V (assumed constant) from RHESSI
    footpoint area x loop length.
  • Assume 100 filling factor.
  • SXR plasma energy, USXR Uthermal Ugravity
    Ukinetic
  • (3 10) nkTV (4 13) x 10-16 (EM V)1/2 T
    ergs
  • Heating rate, P dU/dt Lcond Lrad erg s-1
  • Total heating ?P dt erg

22
Veronig - 21 April 2002
23
Veronig - 23 July 2002
24
Thermal Energies
25
Conclusions
  • Thermal energy estimates subject to
    order-of-magnitude uncertainties.
  • SXR-emitting plasma has 10 times more energy at
    the peak of the 21 April flare than at the peak
    of the 23 July flare.
  • Including conductive cooling losses can increase
    the total energy requirement by a large factor.
  • Including the decay phase energy input increases
    the total flare energy by factor of 2.
Write a Comment
User Comments (0)
About PowerShow.com