Learning a Small Mixture of Trees - PowerPoint PPT Presentation

1 / 1
About This Presentation
Title:

Learning a Small Mixture of Trees

Description:

(xa): Unary potentials. da: Degree of va. Renyi, 1961. KL( 1|| 2) = x Pr(x ... Focuses on dominant mode. Rosset and Segal, 2002 (RS02) arg min. m p(xi) Pr(xi ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 2
Provided by: bnk2
Category:

less

Transcript and Presenter's Notes

Title: Learning a Small Mixture of Trees


1
Learning a Small Mixture of Trees
S T A N F O R D
Problem Formulation
Aim To efficiently learn a small mixture of
trees that approximates an observed distribution
Results
Standard UCI datasets
Choose from all possible trees T ?tj defined
over n random variables
Constraints defined on infinite variables
max ??
Matrix A where A(i,j) Pr(xi?tj)
Overview
s.t. ai? bi
Vector b where b(i) p(xi)
An intuitive objective function for learning a
mixture of trees
Finding ?-optimal solution?
? ? P
Formulate the problem using fractional covering
? ? P
Vector ? 0 such that ? ?j 1
Identify the drawbacks of fractional covering
Fractional Covering
Plotkin et al., 1995
MJ00 uses twice as many trees
Make suitable modifications to the algorithm
Minimize first-order approximation
Learning Pictorial Structures
Parameter ?? log(m)
Define ??0 mini ai?0/bi
Mixture of Trees
11 characters in an episode of Buffy
Width w max?maxi ai?/bi
Define ? ?/4?w
Drawbacks
Variables V v1, v2, , vn
Labeling x
Label xa ? Xa for variable va
24,244 faces (first 80 train, last 20 test)
Initial solution ?0
While ?? lt 2??0, iterate
(1) Slow convergence
?(a,b) ?tab(xa,xb)
13 facial features (variables) positions
(labels)
Define yi exp(-?ai?/bi)/bi
Pr(x ?t)
z
Hidden variable
(2) Singleton trees (Probability 0 for unseen
test examples)
min ?? ?iexp(-?ai?/bi)
Unary logistic regression, Pairwise ?m
?a ?ta(xa)da-1
Find ? argmax? yTA?
s.t. ? ? P
Bag of visual words 65.68
RS02
Our
?ta(xa) Unary potentials
t1
t2
t3
Update ? (1-?)? ??
v1
v1
v1
?tab(xa,xb) Pairwise potentials
Modifying Fractional Covering
da Degree of va
Large step-size ?
v2
v3
v2
v3
v2
v3
66.05 66.05 66.01 66.65 66.01 66.86 66.08
67.25 66.08 67.48 66.16 67.50 66.20 67.68
Large yi for numerical stability
Pr(x ?m) ?t ?T Pr(x ?t)
(1) Start with ? 1/w. Increase by a factor of 2
if necessary.
(2) Minimize ? using convex relaxation.
Minimizing the KL Divergence
Initialize tolerance ?, parameter ?, factor f
-??Pr(xi?t)
Pr(x ?1)
?1 observed distribution
Solve for distribution Pr(. ?t)
min ? ? ?i exp
KL(?1?2) ?x Pr(x ?1) log
p(xi)
Pr(x ?2)
?2 simpler distribution
min f? - ?i log(Pr(xi?t)) -?i log(1-Pr(xi?t))
EM Algorithm (Relies heavily on initialization)
Update f ?f until m/f ?
Meila and Jordan, 2000 (MJ00)
s.t. Pr(xi?t) 0, ?i Pr(xi?t) 1
E-step Estimate Pr(x ?t) for each x and t
Rosset and Segal, 2002 (RS02)
Log-barrier approach. Use Newtons method.
Dropped
?t ? T
M-step Obtain structure and potentials (Chow-Liu)
Focuses on dominant mode
Hessian with uniform off-diagonal elements
Minimizing ?-Divergence
To minimize g(z), update z z - (?2g(z))-1 ?g(z)
Renyi, 1961
Matrix inversion in linear time
Hessian
Gradient
Generalization of KL Divergence
Pr(x ?1)?
1
Project to tree distribution using Chow-Liu
May result in increase in ?
log ?x
D?(?1?2)
?-1
D1(?1 ?2) KL(?1 ?2)
Pr(x ?2)1-?
Computationally expensive operation?
Discard best explained sample and recompute ?t
Enforce Pr(xi?t) 0
Fitting q to p
i argmaxi Pr(xi?t)/p(xi)
Larger ? is inclusive
Only one log-barrier optimization required
Use ? ?
Pr(xi?t) Pr(xi?t) si Pr(xi?t)
Use previous solution
si p(xi ?t)/?k p(xk ?t)
Minka, 2005
? 1
? 0.5
? ?
Convergence Properties
Given distribution p(.) find a mixture of trees
by minimizing ?-divergence
Maximum number of increases for ? O(log(log(m)))
p(xi)
Future Work
Pr(xi ?m)
Mixtures in log-probability space?
arg max?m
mini
maxi log
arg min?m
?m
Maximum discarded samples m-1
p(xi)
Pr(xi ?m)
Connections to Discrete AdaBoost?
Polynomial time per iteration. Polynomial time
convergence of overall algorithm.
Write a Comment
User Comments (0)
About PowerShow.com