Basic output through to regression models - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Basic output through to regression models

Description:

file is 'C:workcoursesmar09_courseegoego_odd.dat' ; Output ... Say something about OLS / ML estimation. SAVE = MAHALANOBIS COOKS INFLUENCE; ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 39
Provided by: jonh5
Category:

less

Transcript and Presenter's Notes

Title: Basic output through to regression models


1
Basic output through to regression models
2
  • Title
  • Stata2Mplus conversion for ego_ghq12_id.dta.dta
  • List of variables converted shown below
  • ghq01 ghq time1 item 1
  • ghq02 ghq time1 item 2
  • ghq03 ghq time1 item 3
  • ghq04 ghq time1 item 4
  • ghq05 ghq time1 item 5
  • ghq06 ghq time1 item 6
  • ghq07 ghq time1 item 7
  • ghq08 ghq time1 item 8
  • ghq09 ghq time1 item 9
  • ghq10 ghq time1 item 10
  • ghq11 ghq time1 item 11
  • ghq12 ghq time1 item 12
  • f1 Scores for factor 1
  • id

3
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • !usevariables ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • usevariables ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • idvariable id
  • Analysis
  • Type basic
  • output
  • !sampstat
  • plot
  • type is plot3

4
Output
  • INPUT READING TERMINATED NORMALLY
  • Stata2Mplus conversion for ego_ghq12_id.dta.dta
  • List of variables converted shown below
  • ghq01 ghq time1 item 1
  • ghq02 ghq time1 item 2
  • ghq03 ghq time1 item 3
  • ghq04 ghq time1 item 4
  • ghq05 ghq time1 item 5
  • ghq06 ghq time1 item 6
  • ghq07 ghq time1 item 7
  • ghq08 ghq time1 item 8
  • ghq09 ghq time1 item 9
  • ghq10 ghq time1 item 10
  • ghq11 ghq time1 item 11
  • ghq12 ghq time1 item 12
  • f1 Scores for factor 1
  • id

5
  • SUMMARY OF ANALYSIS
  • Number of groups
    1
  • Number of observations
    1119
  • Number of dependent variables
    6
  • Number of independent variables
    0
  • Number of continuous latent variables
    0
  • Observed dependent variables
  • Continuous
  • GHQ02 GHQ04 GHQ06 GHQ08
    GHQ10 GHQ12
  • Variables with special functions
  • ID variable ID
  • Estimator
    ML
  • Information matrix
    OBSERVED
  • Maximum number of iterations
    1000

6
  • SUMMARY OF DATA
  • Number of missing data patterns
    1
  • SUMMARY OF MISSING DATA PATTERNS
  • MISSING DATA PATTERNS (x not missing)
  • 1
  • GHQ02 x
  • GHQ04 x
  • GHQ06 x
  • GHQ08 x
  • GHQ10 x
  • GHQ12 x
  • MISSING DATA PATTERN FREQUENCIES
  • Pattern Frequency
  • 1 1119

7
  • PROPORTION OF DATA PRESENT
  • Covariance Coverage
  • GHQ02 GHQ04 GHQ06
    GHQ08 GHQ10 GHQ12
  • ________ ________ ________
    ________ ________ ________
  • GHQ02 1.000
  • GHQ04 1.000 1.000
  • GHQ06 1.000 1.000 1.000
  • GHQ08 1.000 1.000 1.000
    1.000
  • GHQ10 1.000 1.000 1.000
    1.000 1.000
  • GHQ12 1.000 1.000 1.000
    1.000 1.000 1.000

8
  • RESULTS FOR BASIC ANALYSIS
  • ESTIMATED SAMPLE STATISTICS
  • Means
  • GHQ02 GHQ04 GHQ06
    GHQ08 GHQ10 GHQ12
  • ________ ________ ________
    ________ ________ ________
  • 1 2.161 2.123 2.060
    2.195 1.987 2.223
  • Covariances
  • GHQ02 GHQ04 GHQ06
    GHQ08 GHQ10 GHQ12
  • ________ ________ ________
    ________ ________ ________
  • GHQ02 0.768
  • GHQ04 0.152 0.373
  • GHQ06 0.350 0.229 0.653
  • GHQ08 0.211 0.199 0.271
    0.387
  • GHQ10 0.387 0.264 0.439
    0.305 0.873
  • GHQ12 0.266 0.196 0.312
    0.250 0.380 0.520

9
  • PLOT INFORMATION
  • The following plots are available
  • Histograms (sample values)
  • Scatterplots (sample values)
  • SAVEDATA INFORMATION
  • Order and format of variables
  • GHQ02 F10.3
  • GHQ04 F10.3
  • GHQ06 F10.3
  • GHQ08 F10.3
  • GHQ10 F10.3
  • GHQ12 F10.3
  • ID I5

10
Histograms and Scatterplots
11
Define new variables
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • usevariables sumodd sumeven
  • idvariable id
  • Define
  • sumodd ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • sumeven ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • Analysis
  • Type basic
  • Etc.

12
Histogram dialogue box
13
(No Transcript)
14
8 bins
10 bins
12 bins
15
multihist ghq02 ghq04 ghq06 ghq08 ghq10 ghq12
16
Scatterplot dialogue box
17
Full sample
Random sample of 250
18
?
19
Regression models
20
Linear Regression
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • usevariables sumodd sumeven
  • idvariable id
  • Define
  • sumodd ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • sumeven ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • Analysis
  • estimator ML
  • Model
  • sumodd on sumeven
  • output
  • sampstat cinterval
  • plot

21
Linear Regression
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • usevariables sumodd sumeven
  • idvariable id
  • Define
  • sumodd ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • sumeven ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • Analysis
  • estimator ML
  • Model
  • sumodd on sumeven
  • output
  • sampstat cinterval
  • plot

22
Linear Regression
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • usevariables sumodd sumeven
  • idvariable id
  • Define
  • sumodd ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • sumeven ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • Analysis
  • estimator ML
  • Model
  • sumodd on sumeven
  • output
  • sampstat cinterval
  • plot

23
Output
  • TESTS OF MODEL FIT
  • Chi-Square Test of Model Fit
  • Value
    0.000
  • Degrees of Freedom
    0
  • P-Value
    0.0000
  • Chi-Square Test of Model Fit for the Baseline
    Model
  • Value
    1635.553
  • Degrees of Freedom
    1
  • P-Value
    0.0000
  • CFI/TLI
  • CFI
    1.000
  • TLI
    1.000
  • Loglikelihood

24
  • Information Criteria
  • Number of Free Parameters
    3
  • Akaike (AIC)
    10316.495
  • Bayesian (BIC)
    10331.555
  • Sample-Size Adjusted BIC
    10322.027
  • (n (n 2) / 24)
  • RMSEA (Root Mean Square Error Of Approximation)
  • Estimate
    0.000
  • 90 Percent C.I.
    0.000 0.000
  • Probability RMSEA lt .05
    0.000
  • SRMR (Standardized Root Mean Square Residual)
  • Value
    0.000

25
  • MODEL RESULTS

  • Two-Tailed
  • Estimate S.E.
    Est./S.E. P-Value
  • SUMODD ON
  • SUMEVEN 0.890 0.015
    60.886 0.000
  • Intercepts
  • SUMODD 1.941 0.193
    10.051 0.000
  • Residual Variances
  • SUMODD 2.868 0.121
    23.654 0.000
  • CONFIDENCE INTERVALS OF MODEL RESULTS
  • Lower .5 Lower 2.5
    Estimate Upper 2.5 Upper .5

26
Compare with Stata
  • Source SS df MS
    Number of obs 1119
  • -------------------------------------------
    F( 1, 1117) 3700.56
  • Model 10633.9457 1 10633.9457
    Prob gt F 0.0000
  • Residual 3209.82016 1117 2.87360802
    R-squared 0.7681
  • -------------------------------------------
    Adj R-squared 0.7679
  • Total 13843.7659 1118 12.3826171
    Root MSE 1.6952
  • --------------------------------------------------
    ----------------------------
  • sumodd Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • sumeven .8900851 .0146318 60.83
    0.000 .8613762 .9187941
  • _cons 1.941059 .1933 10.04
    0.000 1.561787 2.320332
  • --------------------------------------------------
    ----------------------------
  • Say something about OLS / ML estimation

27
SAVE MAHALANOBIS COOKS INFLUENCE
28
Logistic regression 1 cts predictor
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • usevariables sumodd sumeven
  • categorical are sumodd
  • idvariable id
  • Define
  • sumodd ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • sumeven ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • cut sumodd (16)
  • Analysis
  • estimator ML
  • Model

29
  • MODEL RESULTS
    Two-Tailed
  • Estimate S.E.
    Est./S.E. P-Value
  • SUMODD ON
  • SUMEVEN 0.970 0.070
    13.856 0.000
  • Thresholds
  • SUMODD1 15.665 1.080
    14.499 0.000
  • CONFIDENCE INTERVALS OF MODEL RESULTS
  • Lower .5 Lower 2.5
    Estimate Upper 2.5 Upper .5
  • SUMODD ON
  • SUMEVEN 0.790 0.833
    0.970 1.107 1.150
  • Thresholds

30
Compare with Stata
  • . gen sumodd_g sumodd
  • . recode sumodd_g 0/160 17/241
  • (sumodd_g 1119 changes made)
  • . tab sumodd_g
  • sumodd_g Freq. Percent Cum.
  • -----------------------------------------------
  • 0 916 81.86 81.86
  • 1 203 18.14 100.00
  • -----------------------------------------------
  • Total 1,119 100.00
  • . logistic sumodd_g sumeven
  • Logistic regression
    Number of obs 1119

  • LR chi2(1) 666.85

  • Prob gt chi2 0.0000
  • Log likelihood -196.45269
    Pseudo R2 0.6292

31
Logistic regression 2 binary predictor
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • usevariables sumodd sumeven
  • categorical are sumodd
  • idvariable id
  • Define
  • sumodd ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • sumeven ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • cut sumeven (16)
  • cut sumodd (16)
  • Analysis
  • estimator ML

Dont put sumeven here
32
  • MODEL RESULTS
    Two-Tailed
  • Estimate S.E.
    Est./S.E. P-Value
  • SUMODD ON
  • SUMEVEN 4.647 0.273
    17.020 0.000
  • Thresholds
  • SUMODD1 2.687 0.132
    20.307 0.000
  • CONFIDENCE INTERVALS OF MODEL RESULTS
  • Lower .5 Lower 2.5
    Estimate Upper 2.5 Upper .5
  • SUMODD ON
  • SUMEVEN 3.944 4.112
    4.647 5.182 5.350
  • Thresholds

33
Compare with Stata
  • . gen sumeven_g sumeven
  • . recode sumeven_g 0/160 17/241
  • (sumeven_g 1119 changes made)
  • . tab sumeven_g
  • sumeven_g Freq. Percent Cum.
  • -----------------------------------------------
  • 0 957 85.52 85.52
  • 1 162 14.48 100.00
  • -----------------------------------------------
  • Total 1,119 100.00
  • . xi logistic sumodd_g i.sumeven_g
  • Logistic regression
    Number of obs 1119

  • LR chi2(1) 484.77

  • Prob gt chi2 0.0000
  • Log likelihood -287.49045
    Pseudo R2 0.4574

34
Logistic regression 3 ordinal predictor
  • Variable
  • Names are
  • ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
  • ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
  • f1 id
  • Missing are all (-9999)
  • usevariables sumodd ghq02_1 ghq02_2
  • categorical are sumodd
  • idvariable id
  • Define
  • sumodd ghq01 ghq03 ghq05 ghq07 ghq09
    ghq11
  • !sumeven ghq02 ghq04 ghq06 ghq08 ghq10
    ghq12
  • cut sumodd (16)
  • ghq02_1 ghq02
  • ghq02_2 ghq02
  • cut ghq02_1 (1)
  • cut ghq02_2 (2)
  • if ghq02_2 eq 1 then ghq02_1 0

35
  • MODEL RESULTS

  • Two-Tailed
  • Estimate S.E.
    Est./S.E. P-Value
  • SUMODD ON
  • GHQ02_1 2.103 0.524
    4.015 0.000
  • GHQ02_2 3.786 0.515
    7.348 0.000
  • Thresholds
  • SUMODD1 4.182 0.504
    8.301 0.000
  • CONFIDENCE INTERVALS OF MODEL RESULTS
  • Lower .5 Lower 2.5
    Estimate Upper 2.5 Upper .5
  • SUMODD ON
  • GHQ02_1 0.754 1.076
    2.103 3.129 3.452

36
Compare with Stata
  • . recode ghq02 43
  • (ghq02 88 changes made)
  • . xi logistic sumodd_g i.ghq02
  • i.ghq02 _Ighq02_1-3 (naturally
    coded _Ighq02_1 omitted)
  • Logistic regression
    Number of obs 1119

  • LR chi2(2) 190.38

  • Prob gt chi2 0.0000
  • Log likelihood -434.68929
    Pseudo R2 0.1796
  • --------------------------------------------------
    ----------------------------
  • sumodd_g Odds Ratio Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • _Ighq02_2 8.1875 4.287567 4.02
    0.000 2.933598 22.85083
  • _Ighq02_3 44.07477 22.7058 7.35
    0.000 16.05759 120.9761
  • --------------------------------------------------
    ----------------------------

37
(No Transcript)
38
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com