Static and Dynamic Resource Management in Ontological Semantics - PowerPoint PPT Presentation

1 / 46
About This Presentation
Title:

Static and Dynamic Resource Management in Ontological Semantics

Description:

(is-a(hier(damage physiological-event))) (subclasses (hier(suffocate contusion pull-ligament break-bone burn-injury bruise concussion electric-shock) ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 47
Provided by: maxpet
Category:

less

Transcript and Presenter's Notes

Title: Static and Dynamic Resource Management in Ontological Semantics


1
Static and Dynamic Resource Management in
Ontological Semantics
  • Max Petrenko
  • RiverGlass, Inc.

2
Presentation plan
  • 1) OnSe architecture
  • 2) Static resources management
  • Ontology management
  • Lexicon management
  • 3) Dynamic resources management
  • Semantic Text Analyzer (STAn)
  • Modules
  • Pre-processing options
  • Processing options
  • 4) STAn assessment

3
OnSe architecture
  • Ontology 1873 concepts
  • Lexicon 10500 entries
  • Ontology browser/acquisition tool (OAT)
  • Lexicon browser/acquisition tool (LAT)
  • STAn 14 modules

4
OnSe architecture
SEMANTIC TEXT ANALYZER Lexicon reader Format
checker Parsing modules
LOAD
Ontology acquisition tool
Lexicon acquisition tool
SUBMIT
SUBMIT
Lexicon acquisition
Ontology acquisition
Sync
5
Static resource management
  • Ontology
  • - language-independent
  • - culture-independent
  • - parsimonious
  • Lexicon
  • - language-specific
  • - carries syntactic and semantic information
  • - guided by ontology

6
Ontology management
  • Core features
  • - hierarchically structured
  • - hundreds of properties
  • - case-roles
  • - modality values
  • - literal and relative attributes
  • - relations between objects and events
  • - triplet (property(facet(filler))) format
  • - filler inheritance
  • - inheritance blocking mechanism
  • - inverse processing
  • - metonymic relation HUMAN(has-social-rol
    e(SOCIAL-ROLE))

7
Ontology management
  • Ontological facets
  • ARREST
  • agent default POLICE-OFFICER
  • sem HUMAN
  • beneficiary default CRIMINAL
  • sem HUMAN
  • DEFAULT indicates a more typical filler
    (important to TMR weight assignment)
  • DEFAULT should be in the class of SEM

8
Ontology management
9
Ontology management
10
Ontology management
11
Ontology management
  • Concept structure BOX
  • (box
  • (definition (value("a rectangular
    container")))
  • (is-a (hier(container)))
  • (made-of
  • (sem(ceramic metal paper plastic
    wood))) (shape(value(rectangular square)))
  • )

12
Ontology management
13
Ontology management
  • Concept structure INJURY
  • (injury
  • (definition (value("to damage a body part")))
  • (is-a(hier(damage physiological-event)))
  • (subclasses
  • (hier(suffocate contusion pull-ligament
    break-bone burn-injury bruise concussion
    electric-shock)))
  • (theme(sem(animal-part)))
  • (beneficiary(sem(animal))))

14
Ontology management
15
Ontology management
  • Concept structure SHAPE
  • (shape
  • (definition (value("the shape of objects")))
  • (is-a (hier(physical-object-attribute)))
  • (domain (sem(physical-object)))
  • (range (value(curved cylindrical egglike hooked
    linear oval rectangular round square
    triangular)))
  • )

16
Ontology management
  • shape(domain(value(physical-object)))
  • BOX
  • IS-A hier CONTAINER
  • IS-A hier ARTIFACT
  • IS-A hier PHYSICAL-OBJECT
  • shape(domain(value(box))) true
  • Question How about the shape of gold?

17
Ontology management
18
Ontology management
  • SHAPE
  • (domain(value(PHYSICAL-OBJECT )
  • MATERIAL
  • METAL
  • METALLIC-ELEMENT
  • GOLD
  • (shape(domain(value(gold)))) true

IS-A
IS-A
IS-A
IS-A
19
Lexicon management
  • Lexicon
  • Core features
  • - cannot transgress ontological restrictions
  • - can only further restrict ontological fillers
  • - carries syntactic and semantic info
  • - covers closed classes (prepositions, pronouns,
    etc)
  • - represents synonymy
  • - covers derivatives
  • - covers alternations

20
Lexicon management
  • Lexical entry template
  • (head-entry
  • (sense-1, 2, 3
  • (cat(n/v/adj/pro/prep))
  • (synonyms "")
  • (anno(def "")
  • (comments "Acquired by ltacquirer namegt on
    ltdategt at lttimegt. ")
  • (ex ""))
  • (syn-struc((root(var0))(cat(n/v/adj/pro/prep)))
    )
  • (sem-struc(CONCEPT))
  • ))

21
Lexicon management
22
Lexicon management
  • (box
  • (box-n1
  • (cat(n))
  • (synonyms "")
  • (anno(def "a rectangular container")
  • (comments "Acquired by mpetrenko on 05-25-2009
    at 064959 CDT. ")
  • (ex "the man put the book in the box"))
  • (syn-struc((root(var0))(cat(n))))
  • (sem-struc(box))
  • )

23
Lexicon management
  • (box-v1
  • (anno(def "to put in a box")(ex "he boxed the
    glassware")(comments ""))(synonyms "")(cat(v))
  • (syn-struc(
  • (subject((root(var1))(cat(np))))(root(var0))(ca
    t(v)) (directobject((root(var2))(opt())(cat(np))
    ))))
  • (sem-struc
  • (put(end-location(sem(box)))
  • (agent(value(var1(should-be-a(sem(human))))))
  • (theme(value(var2(should-be-a(sem(artifact
    material plant))))))))
  • )

24
Lexicon management
  • Variables function
  • syn-struc var1 var0 var2 varx
  • sem-struc var1 concept var2 varx
  • var0 stands for the ontological concept
  • Syntactic variables
  • specify position in the sentence
  • specify syntactic category
  • Semantic variables
  • provide semantic information
  • constrain ontological properties
  • specify ontological fillers

25
Lexicon management
  • Constraining ontological properties
  • box-v1
  • (sem-struc
  • (put(end-location(sem(box)))
  • (agent(value(var1(should-be-a(sem(human))))))
  • (theme(value(var2(should-be-a(sem(artifact
    material plant))))))))

26
Lexicon management
  • (agent(value(var1(should-be-a(sem(human))))))
  • Ontology
  • (agent
  • (definition (value("the doer of an action")))
  • (is-a (hier(case-role)))
  • (inverse (value(agent-of)))
  • (domain (sem(event)))
  • (range (sem(animate group))))
  • HUMAN ? HOMINIDAE ? ltgt ANIMAL ? ANIMATE
  • var1 tells STAn to search for children of HUMAN

27
Lexicon management
  • (theme
  • (value(var2(should-be-a(sem(artifact material
    plant))))))))
  • (theme
  • (definition (value("the object of an
    event")))
  • (is-a (hier(case-role)))
  • (inverse (value(theme-of)))
  • (domain (sem(event)))
  • (range (sem(event object property))))
  • ARTIFACT ? PHYSICAL-OBJECT
  • MATERIAL ? PHYSICAL-OBJECT
  • PLANT ? ANIMATE ? PHYSICAL-OBJECT

28
Lexicon management
  • Why are the restrictions necessary?
  • (box-v1
  • (sem-struc
  • (put(end-location(sem(box)))
  • (agent(value(var1)))
  • (theme(value(var2))))))
  • Sentences now allowed
  • The flyAg boxed the bananaTh
  • The coralAg boxed the bridgeTh
  • The horseAg boxed the starTh

29
Lexicon management
  • PROBLEM acquiring verbs with Subject-Instrument
    alternation (Beth Levins index)
  • (1) The man Agent broke the window
  • (2) The hammer Instrument broke the window
  • (3) The asteroid Instrument broke the window
  • (4) The hurricane Precondition broke the window
  • Solution expand the sem-struc to include more
    case roles mapping on the same variable

30
Lexicon management
  • (break-v1
  • (cat(v))(anno(def "to cause to break")
  • (ex "")(comments "")(senseprim(1)))(synonyms "")
  • (syn-struc ((subject((root(var1))(cat(np))))(roo
    t(var0))(cat(v))
  • (directobject((root(var2))(cat(np))))))
  • (sem-struc (damage(agent(value(var1)))
  • (instrument(value(var1(should-be-a(sem(artifact
    animate-part material celestial-object)))
  • (precondition(value(var1))))))
  • (theme(value(var2(should-be-a(sem(artifact)))))
    ))))

31
Lexicon management
  • Problem how to avoid long enumerations in the
    restrictions for variables
  • break-v1
  • (instrument
  • (value(var1(should-be-a
  • (sem (artifact
  • animate-part
  • material
  • celestial-object)))
  • same for damage-v1, destroy-v1, devastate-v1,
    etc.

32
Lexicon management
33
Lexicon management
  • (physical-object
  • (definition (value("objects that physically
    exist")))
  • (is-a (hier(object)))
  • (subclasses
  • (hier (surface-feature
  • landscape-object
  • animate agent of break-v1
  • animate-part
  • animal-artifact instrument of break-v
  • material
  • artifact
  • celestial-object))))

34
Lexicon management
  • Why do we need this enumeration?
  • Take a sentence, The man broke the window
  • Remove the restriction from (instrument(value(va
    r1)))
  • Resulting TMR is bad
  • TMR 1Weight(TMR) 2.22 Event break-v1, damage1
  • agent(value (man-n1, human1(gender(value(male)))))
  • instrument(value(man-n1, human(gender(value(male
  • )))))
  • theme(value (window-n1, window1 ))

35
Lexicon management
  • Alternative solution introduce the division of
    concepts INANIMATE vs. ANIMATE as children of
    PHYSICAL-OBJECT
  • PHYSICAL-OBJECT
  • subclasses value ANIMATE
  • INANIMATE
  • ANIMATE
  • subclasses value ANIMAL FUNGUS
  • PLANT VIRUS
  • INANIMATE
  • Subclasses value ANIMAL-ARTIFACT
  • ARTIFACT
  • MATERIAL
  • CELESTIAL-OBJECT, etc.

36
Lexicon management
  • Problematic entries closed classes
    (prepositions, parametric verbs, adjectives,
    pronouns, conjunctions, etc.)
  • Prepositions specific format parsing module
  • Parametric verbs specific format
  • Adjectives specific format
  • Pronouns specific format parsing module

37
Lexicon management
  • Prepositions
  • (with-prep1
  • (anno(def "by the means of")(comments "")(ex "he
    shot the man with the gun"))(cat(prep))(synonyms
    "")
  • (syn-struc((vp((root(var1))(cat(vp))))
    (root(var0))(cat(prep))(obj((root(var2))(cat(np)
    )))))
  • (sem-struc(var1(instrument(value(var2(should-b
    e-a(sem(artifact animal-part material
    plant-part)))))))))

38
Lexicon acquisition
  • Problem distinguishing strong and weak
    prepositions
  • - The criminal killed the victim with a knife.
  • Preposition is strong indicates instrumentality
  • The FBI are opening an Investigation of into
    over regarding a fight.
  • Prepositions are weak they are
    interchangeable, carry indirect meaning.
  • How do we acquire them?

39
Lexicon management
  • Solution acquire weak prepositions as part of
    lexical entries as a (pp-adjunct(root)(object)))
  • (investigation-n1
  • (cat(n))(anno(def "a legal process")
  • (syn-struc((root(var0))(cat(n))
  • (pp-adjunct((opt())(root(of into over
    regarding)) (cat(prep))(obj((root(var2))(cat(np))
    ))))
  • (sem-struc(investigate
  • (agent(value(var1))) (theme(value(var2))))))

40
Dynamic resource management
  • Semantic Text Analyzer (STAn) modules
  • Event identification module
  • Property filler module Basic
  • TMR building module processing stage
  • Passives module
  • Multiword Entry Resolution module
  • Preposition module Extended
  • Possessives resolution module processing stage
  • Event embedment module
  • Pronoun resolution module Advanced
  • Unattested Personal Names module processing stage

41
Semantic Text Analyzer (STAn)
  • STAn
  • Input Natural Language text
  • Output Text Meaning Representation (TMR)
  • Basic functionality
  • - performs parsing, event identification, and
    case-role filling within and across clauses
  • - performs pronoun, possessives, multiword
    resolution
  • - co-reference under development
  • - multi-clausal parsing under development

42
Semantic Text Analyzer
43
Semantic Text Analyzer
  • Module management
  • Preposition processing module
  • 1. A PP phrase is broken into Noun Prep Noun
  • 2. Look for pp-adjuncts in the noun.
  • 3. Look for preposition senses in the file.
  • 4. Try to resolve the PP by filling the nouns
    based on the property

44
Semantic Text Analyzer
  • Input The man closed the door of the car
  • 1. Look for pp-adjunct in the noun car-n1? No.
  • 2. Look for a sense of of-prep in the file?
    Found.
  • of-prep1 (sem-struc(var1(origin(value(var2(s
    hould-be-a(sem(territory))))))))
  • of-prep2 (sem-struc(var1(made-of(value(var2(s
    hould-be-a(sem(material))))))))
  • of-prep3(sem-struc(var1(should-be-a(sem(physica
    l-object)))(part-of-object(value(var2(should-be-
    a(sem(physical-object)))))))) -- SELECTED

45
Semantic Text Analyzer
46
Resource management cycle
  • For large corpora use gap detector
  • For small corpora run STAn
  • Detect the gap
  • Acquire the entry
  • Test the entry by STAn
  • Locate inconsistencies (extra TMRs wrong
    case-roles)
  • Verify ontological restrictions
  • Research documentation
  • Revise the entry
  • Test the entry by STAn
Write a Comment
User Comments (0)
About PowerShow.com