Title: Simplex Method
1Simplex Method
By Jeffrey Bivin Lake Zurich High School
Last Updated October 11, 2005
2The Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
- x1 gt 0
- x2 gt 0
- x3 gt 0
Jeff Bivin -- LZHS
3Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 s1 4
Jeff Bivin -- LZHS
4Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4
Jeff Bivin -- LZHS
5Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4
Jeff Bivin -- LZHS
6Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4
Jeff Bivin -- LZHS
7Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4 x1 x2 s2 1
Jeff Bivin -- LZHS
8Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4 x1 x2 s2 1
Jeff Bivin -- LZHS
9Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4 x1 x2 s2 1 x2 s3
2
Jeff Bivin -- LZHS
10Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4 x1 x2 s2 1 x3 s3
2
Jeff Bivin -- LZHS
11Re-writing the Constraints
- x1 2x2 x3 lt 4
- x1 x2 gt 1 x3 gt 2
x1 2x2 x3 s1 4 x1 x2 s2 1 x3 s3
2
Jeff Bivin -- LZHS
12Function to minimize
We use a negative z because we want to minimize
Jeff Bivin -- LZHS
13Function to minimize
Re-writing
2x1 x2 x3 z 0
Jeff Bivin -- LZHS
14Initial Tableau
Jeff Bivin -- LZHS
15Initial Tableau
contraints
Jeff Bivin -- LZHS
16Initial Tableau
function
Jeff Bivin -- LZHS
17Initial Tableau
Jeff Bivin -- LZHS
18Initial Tableau Analysis
Jeff Bivin -- LZHS
19A negative basic variable in s2leads us to use
column x1 as the pivot column.
Jeff Bivin -- LZHS
20A negative basic variable in s2leads us to use
column x1 as the pivot column.
s2 is a basic variable because it has only one
non-zero element in the column
Jeff Bivin -- LZHS
21A negative basic variable in s1leads us to use
column x1 as the pivot column.
We use Column x1 as the pivot column because the
1 in column x1 is the left most positive number
in the row with the -1 value (negative basic
variable).
Jeff Bivin -- LZHS
22Divide the value column by the pivot column.This
adds an additional column at the right.
Jeff Bivin -- LZHS
231 is the lowest non-negative quotient.
Jeff Bivin -- LZHS
241 is the lowest non-negative quotient.Therefore,
the 1 in column x1 is determined to be the
pivot point.
Jeff Bivin -- LZHS
25Determine the row operationsrow1 row1
row2row2 row2row3 row3row4 row4 2 x
row2
Jeff Bivin -- LZHS
26Perform the row operations to determine Tableau 2
Jeff Bivin -- LZHS
272nd Tableau Analysis
Jeff Bivin -- LZHS
28 A negative basic variable in s3leads us to use
column x3 as the pivot column.
Jeff Bivin -- LZHS
29 Divide the value column by the pivot
column.This adds an additional column at the
right.
Jeff Bivin -- LZHS
30 2 is the lowest non-negative quotient.
Jeff Bivin -- LZHS
31 1000 is the lowest non-negative
quotient.Therefore, 4 is determined to be the
pivot point.
Jeff Bivin -- LZHS
32Determine the row operationsrow1 row1
row3row2 row2row3 row3 row4 row4 row3
Jeff Bivin -- LZHS
33Perform the row operations to determine Tableau 3
Jeff Bivin -- LZHS
343rd Tableau Analysis
Jeff Bivin -- LZHS
35All basic variable are positive.But, we have a
negative value in the bottom row.
Jeff Bivin -- LZHS
36This leads us to use column x2 as the pivot
column.
Jeff Bivin -- LZHS
37 Divide the value column by the pivot
column.This adds an additional column at the
right.
Jeff Bivin -- LZHS
38We have two lowest non-negative quotients.
Therefore, we may choose which to use.
Jeff Bivin -- LZHS
39We have two lowest non-negative quotients.
Therefore, we may choose which to use. Lets
use the first row.
Jeff Bivin -- LZHS
40Using the first row, 1 is determined to be the
pivot point.
Jeff Bivin -- LZHS
41 Determine the row operationsrow1 row1 row2
row2 row1row 3 row3row4 row4 row1
Jeff Bivin -- LZHS
42Perform the row operations to determine Tableau 4
Jeff Bivin -- LZHS
434th Tableau Analysis
Jeff Bivin -- LZHS
44Basic Variables x1, x2, and x3 are all positive
and the bottom row has all positive variable
coefficients.
45Basic Variables x1, x2, and x3 are all positive
and the bottom row has all positive variable
coefficients.
Process Complete
Jeff Bivin -- LZHS
46Determine the Solutions
Jeff Bivin -- LZHS
47Determine the Solutions
Jeff Bivin -- LZHS
48Determine the Solutions
Jeff Bivin -- LZHS
49Determine the Solutions
Jeff Bivin -- LZHS
50Determine the Solutions
Non-basic Variables 0
Jeff Bivin -- LZHS
51Determine the Solutions
Non-basic Variables 0
Jeff Bivin -- LZHS
52Determine the Solutions
Non-basic Variables 0
Jeff Bivin -- LZHS
53Determine the Solutions
Jeff Bivin -- LZHS
54Results
- x1 0
- x2 1
- x3 2
- s1 0
- s2 0
- s3 0
- z 3
Jeff Bivin -- LZHS