The Growth of the MRI in Protoplanetary Disks - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

The Growth of the MRI in Protoplanetary Disks

Description:

Magnetic diffusion regimes. ions, electrons and neutrals decoupled. ions and electrons decoupled ... distinct diffusion regimes: Ohmic (resistive) Hall ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 32
Provided by: markw87
Category:

less

Transcript and Presenter's Notes

Title: The Growth of the MRI in Protoplanetary Disks


1
The Growth of the MRI in Protoplanetary Disks
  • Mark Wardle
  • Macquarie University
  • Sydney, Australia

Protoplanetary disks Magnetic diffusion MRI with
diffusion Ionisation equilibrium Live and Dead
zones
2
  • Minimum-mass solar nebula
  • (Weidenschilling 1977 Hayashi 1981)

3
Kitamura et al 2002 ApJ
4
  • Protostellar disks are poorly conducting
  • high density implies low conductivity
  • recombinations relatively rapid
  • drag on charged particles
  • deeper layers shielded from ionising radiation
    for r lt 5 AU
  • x-ray attenuation column 10 g/cm2
  • cosmic ray attenuation column 100 g/cm2
  • dead zone near midplane (Gammie 1996)

5
  • Magnetic diffusion regimes

6
  • If the only charged species are ions and
    electrons,
  • Three distinct diffusion regimes

7
Wardle 2007
8
Magnetorotational instability
9
(No Transcript)
10
(No Transcript)
11
  • Resistivity calculations
  • minimum mass solar nebula
  • assume isothermal in z-direction
  • ionisation by cosmic rays and/or x-rays from
    central star
  • simple reaction scheme following Nishi, Nakano
    Umebayashi (1993)
  • H,H3,He,C,molecular (M) and metal ions (M),
    e-, and charged grains
  • extended to allow high grain charge (T larger
    than in molecular clouds)
  • adopt model for grains
  • results for no grains or 0.1 mm grains
    presented here
  • evaluate resistivity components
  • when can the field couple to the shear in the
    disc?
  • which form of diffusion is dominant?

12
x-ray ionisation rate
cosmic rays
Igea Glassgold 1999
13
  • Reaction scheme

14
Abundances 1AU, no grains
e
M
m
C
He
log?z(s-1)
H
log n / nH
z / h
Wardle 2007
15
Resistivities 1AU, no grains
poor coupling (? h cs)
Ambipolar
log h (cm2s-1)
Hall
1 G
0.1 G
Ohmic
z / h
Wardle 2007
16
Wardle 2007
17
MRI growth rate (?)
18
MRI growth rate (?)
no Hall diffusion
19
Salmeron Wardle 2005
20
Salmeron Wardle 2005
21
Abundances 1AU, 0.1mm grains
m
C
He
M
e
log?z(s-1)
0
H
log n / nH
1
-11
-4
2
-12
-3
3
-13
-2
-14
z / h
Wardle 2007
22
Wardle 2007
23
MRI growth rate (?)
24
Wardle 2007
25
MRI growth rate (?)
26
MRI growth rate (?)
27
MRI growth rate (?)
28
MRI growth rate (?)
no Hall diffusion
29
Salmeron Wardle 2008
30
  • Notes
  • No grains coupling can be maintained even at the
    midplane at 1AU
  • Hall diffusion dominates
  • ?active 1700 g cm2
  • Grains increase magnetic diffusion
  • 1 AU 0.1 µm ?active 2 g cm2
  • 3 µm ?active 80 g cm2
  • 5 AU 1 µm ?active ?total
  • No cosmic rays?
  • in absence of grains, X-rays ? ?active 150 g
    cm2 at 1AU
  • with grains, X-rays dominate ionization of active
    layer in any case
  • Increase disk mass?
  • ?active unchanged
  • Small grains?
  • aaaargh

31
  • Dead zones vs live zones
  • critical for disk evolution
  • vertical and radial transport
  • grain evolution
  • planet migration
  • external ionizing sources
  • cosmic rays (maybe) dominate at midplane
  • x-rays dominate at surface
  • stellar energetic particles?
  • poisoning of magnetic coupling by grains
  • dead zone boundary grains just able to soak up
    most electrons
  • key grain parameter Integral a n(a) da
  • e.g, 103 cf standard 0.1 µm grains keeps
    midplane alive at 1 AU in MMSN
Write a Comment
User Comments (0)
About PowerShow.com