Semantic query, rules, tools Inference, triple stores, etc - PowerPoint PPT Presentation

1 / 54
About This Presentation
Title:

Semantic query, rules, tools Inference, triple stores, etc

Description:

... and improve a well-defined methodology ... Class(Student partial Person) or. SubClassOf(Student Person) ... ENTITY xs 'http://www.w3.org/2001/XMLSchema ... – PowerPoint PPT presentation

Number of Views:157
Avg rating:3.0/5.0
Slides: 55
Provided by: Pete312
Category:

less

Transcript and Presenter's Notes

Title: Semantic query, rules, tools Inference, triple stores, etc


1
Semantic query, rules, tools (Inference, triple
stores, etc)
  • Peter Fox (RPI)
  • ESIP Winter Meeting
  • Washington D.C., 2009, Jan 6, 4-530pm

2
Semantic Web Methodology and Technology
Development Process
  • Establish and improve a well-defined methodology
    vision for Semantic Technology based application
    development
  • Leverage controlled vocabularies, et c.

Adopt Technology Approach
Leverage Technology Infrastructure
Science/Expert Review Iteration
Rapid Prototype
Open World Evolve, Iterate, Redesign, Redeploy
Use Tools
Analysis
Use Case
Develop model/ ontology
Small Team, mixed skills
2
3
Semantic Web Layers
http//www.w3.org/2003/Talks/1023-iswc-tbl/slide26
-0.html, http//flickr.com/photos/pshab/291147522/
4
Terminology
  • Ontology (n.d.). The Free On-line Dictionary of
    Computing. http//dictionary.reference.com/browse/
    ontology
  • An explicit formal specification of how to
    represent the objects, concepts and other
    entities that are assumed to exist in some area
    of interest and the relationships that hold among
    them.
  • Semantic Web
  • An extension of the current web in which
    information is given well-defined meaning, better
    enabling computers and people to work in
    cooperation, www.semanticweb.org
  • Primer http//www.ics.forth.gr/isl/swprimer/

5
Ontology Spectrum
Thesauri narrower term relation
Selected Logical Constraints (disjointness,
inverse, )
Frames (properties)
Formal is-a
Catalog/ ID
Informal is-a
Formal instance
General Logical constraints
Terms/ glossary
Value Restrs.
Originally from AAAI 1999- Ontologies Panel by
Gruninger, Lehmann, McGuinness, Uschold, Welty
updated by McGuinness. Description in
www.ksl.stanford.edu/people/dlm/papers/ontologies-
come-of-age-abstract.html
6
Ontology - declarative knowledge
  • The triple subject-object-predicate
  • interferometer is-a optical instrument
  • Fabry-Perot is-a interferometer
  • Optical instrument has focal length
  • Optical instrument is-a instrument
  • Instrument has instrument operating mode
  • Data archive has measured parameter
  • SO2 concentration is-a concentration
  • Concentration is-a parameter
  • A query select all optical instruments which
    have operating mode vertical
  • An inference infer operating modes for a
    Fabry-Perot Interferometer which measures neutral
    temperature

7
What is Query?
  • http//esw.w3.org/topic/SPARQL
  • Languages
  • SPARQL for RDF (http//www.sparql.org/ and
    http//www.w3.org/TR/rdf-sparql-query/ )
  • RDFQuery for RDF
  • SeRQL for RDF (SeSAME)
  • OWL-QL for OWL (http//projects.semwebcentral.org/
    projects/owl-ql/ )
  • XQUERY for XML
  • Few as yet for natural language representations
    (ROO Dolbear, et al., )

8
SPARQL
  • W3 Recommendation, Jan 2008
  • SPARQL has 4 result forms
  • SELECT Return a table of results.
  • CONSTRUCT Return an RDF graph, based on a
    template in the query.
  • DESCRIBE Return an RDF graph, based on what the
    query processor is configured to return.
  • ASK Ask a boolean query.
  • The SELECT form directly returns a table
  • DESCRIBE and CONSTRUCT use the outcome of
    matching to build RDF graphs.

9
SPARQL Solution Modifiers
  • Pattern matching produces a set of solutions.
    This set can be modified in various ways
  • Projection - keep only selected variables
  • OFFSET/LIMIT - chop the number solutions (best
    used with ORDER BY)
  • ORDER BY - sorted results
  • DISTINCT - yield only one row for one combination
    of variables and values.
  • The solution modifiers OFFSET/LIMIT and ORDER BY
    always apply to all result forms.

10
Query examples
  • PREFIX foaf lthttp//xmlns.com/foaf/0.1/gt
  • SELECT ?url
  • FROM ltbloggers.rdfgt
  • WHERE
  • ?contributor foafname "Jon Foobar" .
  • ?contributor foafweblog ?url .

11
What happens
  • These triples together comprise a graph pattern.
  • The query attempts to match the triples of the
    graph pattern to the model.
  • Each matching binding of the graph pattern's
    variables to the model's nodes becomes a query
    solution, and the values of the variables named
    in the SELECT clause become part of the query
    results.
  • In this example, the first triple in the WHERE
    clause's graph pattern matches a node with a
    foafname property of "Jon Foobar," and binds it
    to the variable named contributor.
  • In the bloggers.rdf model, contributor will match
    the foafAgent blank-node at the top of the
    figure.
  • The graph pattern's second triple matches the
    object of the contributor's foafweblog property.
  • This is bound to the url variable, forming a
    query solution.

12
Using SPARQL with Jena
  • Jena calls RDF graphs "models" and triples
    "statements" because that is what they were
    called at the time the Jena API was first
    designed
  • ARQ's query engine can also parse queries
    expressed in RDQL or its own internal query
    language. ARQ is under active development, and is
    not yet part of the standard Jena distribution.
  • http//jena.sourceforge.net/ARQ/Tutorial/data.html
  • Can also use SPARQL from the command line

13
com.hp.hpl.jena.query package
  • // Open the bloggers RDF graph from the
    filesystem
  • InputStream in new FileInputStream(new
    File("bloggers.rdf"))
  • // Create an empty in-memory model and populate
    it from the graph
  • Model model ModelFactory.createMemModelMaker().c
    reateModel()
  • model.read(in,null) // null base URI, since
    model URIs are absolute
  • in.close()
  • // Create a new query
  • String queryString
  • "PREFIX foaf lthttp//xmlns.com/foaf/0.1/gt "
  • "SELECT ?url "
  • "WHERE "
  • " ?contributor foafname \"Jon Foobar\" . "
  • " ?contributor foafweblog ?url . "
  • "
  • Query query QueryFactory.create(queryString)
  • // Execute the query and obtain results
  • QueryExecution qe QueryExecutionFactory.create(q
    uery, model)
  • ResultSet results qe.execSelect()
  • // Output query results

14
More complex queries
  • _at_prefix foaf lthttp//xmlns.com/foaf/0.1/gt .
  • _a foafname "Jon Foobar"
  • foafmbox ltmailtojon_at_foobar.xxgt
  • foafdepiction lthttp//foobar.xx/2005/04/jo
    n.jpggt .
  • _b foafname "A. N. O'Ther"
  • foafmbox ltmailtoa.n.other_at_example.ne
    tgt
  • foafdepiction lthttp//example.net/photos/a
    n-2005.jpggt .
  • _c foafname "Liz Somebody"
  • foafmbox_sha1sum "3f01fa9929df769aff173f57dec
    2fe0c2290aeea"
  • _d foafname "M Benn"
  • foafdepiction lthttp//mbe.nn/pics/me.jpeggt
    .

15
Querying FOAF data with an optional block
  • PREFIX foaf lthttp//xmlns.com/foaf/0.1/gt
  • SELECT ?name ?depiction
  • WHERE
  • ?person foafname ?name .
  • OPTIONAL
  • ?person foafdepiction ?depiction .
  • .
  • name depiction
  • "A. N. O'Ther" lthttp//example.net/photos/an-2
    005.jpggt
  • "Jon Foobar" lthttp//foobar.xx/2005/04/jon.j
    pggt
  • "Liz Somebody"
  • "M Benn" lthttp//mbe.nn/pics/me.jpeggt

16
Query with alternative matches, and its results
  • PREFIX foaf lthttp//xmlns.com/foaf/0.1/gt
  • PREFIX rdf lthttp//www.w3.org/1999/02/22-rdf-synt
    ax-nsgt
  • SELECT ?name ?mbox
  • WHERE
  • ?person foafname ?name .
  • ?person foafmbox ?mbox UNION ?person
    foafmbox_sha1sum ?mbox
  • name mbox
  • "Jon Foobar" ltmailtojon_at_foobar.xxgt
  • "A. N. O'Ther" ltmailtoa.n.other_at_example
    .netgt
  • "Liz Somebody" "3f01fa9929df769aff173f57dec
    2fe0c2290aeea"

17
Filter to retrieve RSS feed items published in
April 2005
  • PREFIX rss lthttp//purl.org/rss/1.0/gt
  • PREFIX xsd lthttp//www.w3.org/2001/XMLSchemagt
  • PREFIX dc lthttp//purl.org/dc/elements/1.1/gt
  • SELECT ?item_title ?pub_date
  • WHERE
  • ?item rsstitle ?item_title .
  • ?item dcdate ?pub_date .
  • FILTER xsddateTime(?pub_date) gt
    "2005-04-01T000000Z"xsddateTime
  • xsddateTime(?pub_date) lt
    "2005-05-01T000000Z"xsddateTime

18
Find people described in two named FOAF graphs
  • PREFIX foaf lthttp//xmlns.com/foaf/0.1/gt
  • PREFIX rdf lthttp//www.w3.org/1999/02/22-rdf-synt
    ax-nsgt
  • SELECT ?name
  • FROM NAMED ltjon-foaf.rdfgt
  • FROM NAMED ltliz-foaf.rdfgt
  • WHERE
  • GRAPH ltjon-foaf.rdfgt
  • ?x rdftype foafPerson .
  • ?x foafname ?name .
  • .
  • GRAPH ltliz-foaf.rdfgt
  • ?y rdftype foafPerson .
  • ?y foafname ?name .
  • .

19
Which graph describes different people
  • PREFIX foaf lthttp//xmlns.com/foaf/0.1/gt
  • PREFIX rdf lthttp//www.w3.org/1999/02/22-rdf-synt
    ax-nsgt
  • SELECT ?name ?graph_uri
  • FROM NAMED ltjon-foaf.rdfgt
  • FROM NAMED ltliz-foaf.rdfgt
  • WHERE
  • GRAPH ?graph_uri
  • ?x rdftype foafPerson .
  • ?x foafname ?name .
  • name graph_uri
  • "Liz Somebody" ltfile//.../jon-foaf.rdfgt
  • "A. N. O'Ther" ltfile//.../jon-foaf.rdfgt
  • "Jon Foobar" ltfile//.../liz-foaf.rdfgt
  • "A. N. O'Ther" ltfile//.../liz-foaf.rdfgt

20
Personalized feed by query filter
  • PREFIX foaf lthttp//xmlns.com/foaf/0.1/gt
  • PREFIX rss lthttp//purl.org/rss/1.0/gt
  • PREFIX dc lthttp//purl.org/dc/elements/1.1/gt
  • SELECT ?title ?known_name ?link
  • FROM lthttp//planetrdf.com/index.rdfgt
  • FROM NAMED ltphil-foaf.rdfgt
  • WHERE
  • GRAPH ltphil-foaf.rdfgt
  • ?me foafname "Phil McCarthy" .
  • ?me foafknows ?known_person .
  • ?known_person foafname ?known_name .
  • .
  • ?item dccreator ?known_name .
  • ?item rsstitle ?title .
  • ?item rsslink ?link .
  • ?item dcdate ?date.
  • ORDER BY DESC?date LIMIT 10

21
Returning as XML
  • SPARQL allows query results to be returned as
    XML, in a simple format known as the SPARQL
    Variable Binding Results XML Format.
  • This schema-defined format acts as a bridge
    between RDF queries and XML tools and libraries.
  • There are a number of potential uses for this
    capability. You could transform the results of a
    SPARQL query into a Web page or RSS feed via
    XSLT, access the results via XPath, or return the
    result document to a SOAP or AJAX client.
  • To output query results as XML, use the
    ResultSetFormatter.outputAsXML() method, or
    specify --results rs/xml on the command line.

22
Final example
  • PREFIX dc lthttp//purl.org/dc/elements/1.1/gt
  • PREFIX rss lthttp//purl.org/rss/1.0/gt
  • SELECT ?link ?title
  • FROM lthttp//rss.slashdot.org/Slashdot/slashdotSci
    encegt
  • FROM lthttp//www.nature.com/nprot/current_issue/rs
    s/index.htmlgt
  • WHERE
  • ?i rsslink?link .
  • ?i dcdate?date . FILTER (?date gt "2008-08-31")
  • ?i rssdescription?desc. FILTER
    regex(?desc,"biolog mathematic","i")
  • ?i rsstitle?title

23
2-page reference guide
  • http//www.dajobe.org/2005/04-sparql/SPARQLreferen
    ce-1.8-us.pdf

24
Using Protégé
  • SPARQL plug-in to run queries on your ontology

25
Semantic Web with Rules
  • Metalog
  • RuleML
  • SWRL
  • WRL
  • Cwm
  • N3 - http//hydrogen.informatik.tu-cottbus.de/wiki
    /index.php/N3_Notation
  • Jess
  • Jena
  • RIF

26
Rules - expressing logic
  • Notation - e.g. Horn rules
  • (P1 ? P2 ? ...) ? C
  • parent(?x,?y) ? brother(?y,?z) ? uncle(?x,?z)
  • for any X, Y and Z if Y is a parent of X, and Z
    is a brother of Y then Z is the uncle of X

27
Examples from http//www.w3.org/Submission/SWRL/
  • A simple use of these rules would be to assert
    that the combination of the hasParent and
    hasBrother properties implies the hasUncle
    property. Informally, this rule could be written
    as
  • hasParent(?x1,?x2) ? hasBrother(?x2,?x3) ?
    hasUncle(?x1,?x3)
  • In the abstract syntax the rule would be written
    like
  • Implies(Antecedent(hasParent(I-variable(x1)
    I-variable(x2)) hasBrother(I-variable(x2)
    I-variable(x3)))Consequent(hasUncle(I-variable(x1)
    I-variable(x3))))
  • From this rule, if John has Mary as a parent and
    Mary has Bill as a brother then John has Bill as
    an uncle.

28
Examples
  • An even simpler rule would be to assert that
    Students are Persons, as in
  • Student(?x1) ? Person(?x1).Implies(Antecedent(Stud
    ent(I-variable(x1)))Consequent(Person(I-variable(x
    1))))
  • However, this kind of use for rules in OWL just
    duplicates the OWL subclass facility. It is
    logically equivalent to write instead
  • Class(Student partial Person) or
  • SubClassOf(Student Person)
  • which would make the information directly
    available to an OWL reasoner.

29
Rule Interchange Format (RIF)
  • Leading candidate for W3 Recommendation
  • Interlingua (similar to KIF)
  • http//www.w3.org/2005/rules/wiki/RIF_Working_Grou
    p
  • Tools starting (just) to emerge

30
Test an interchanged RIF rule set
  • testQuery(Literal)
    test the literal ( rule head or fact)
  • testNotQuery(Literal)
    negatively test the literal with default negation
  • testNegQuery(Literal)
    negatively test the literal with explicit
    negation
  • testNumberOfResults(Literal, Number)
    test number of results derived for the literal
    stated value
  • testNumberOfResults(Literal, Var, Number) test
    number of results for the variable in the literal
  • testNumberOfResultsMore(Literal,Number) test
    number of results for the literal gt given value
  • testNumberOfResultsLess(Literal,Number) test
    number of results for the literal lt given value
  • testNumberOfResultsMore(Literal,Var,Number) test
    number of results for the variable in the literal
    gt given value
  • testNumberOfResultsLess(Literal,Var,Number) test
    number of results for the variable in the literal
    lt given value

31
More RIF testing
  • testResult(QueryLiteral,ResultLiteral)
    test if the second literal is an answer of the
    query literal
  • testResults(Literal,Var,ltBindingListgt)
    test if the list of binding results for the
    variable in the literal can be derived
  • testResultsOrder(Literal,Var,ltBindingListgt)
    test if the list of ordered binding results for
    the variable in the literal can be derived
  • testQueryTime(Literal, MaxTime)
    test if the literal can be derived in less than
    the stated time in milliseconds
  • testNotQueryTime(Literal, MaxTime)
    test if the literal can be derived negatively by
    default in less than the stated time in
    milliseconds
  • testNegQueryTime(Literal, MaxTime)
    test if the literal can be derived strongly
    negative in less than the stated time in
    milliseconds
  • getQueryTime(Literal, Time) get the
    query time for the literal
  • getNotQueryTime(Literal,Time)
    get the default negated query time for the
    literal
  • getNegQueryTime(Literal,Time)
    get the explicitly negated query time for the
    literal

32
Testing class membership
  • Document(
  • Prefix(fam http//example.org/family)
  • Group (
  • Forall ?X ?Y (
  • famisFatherOf(?Y ?X) - And
    (famisSonOf(?X ?Y) famisMale(?Y) ?XfamChild
    ?YfamParent )
  • )
  • famisSonOf(famAdrian famUwe)
  • famisMale(famAdrian)
  • famisMale(famUwe)
  • famAdrianfamChild
  • famUwefamParent
  • )
  • )
  • Conclusion famisFather(famUwe famAdrian)

33
XML for conclusion
  • lt?xml version"1.0" encoding"UTF-8"?gt
  • lt!DOCTYPE Document
  • lt!ENTITY rif "http//www.w3.org/2007/rif"gt
  • lt!ENTITY xs "http//www.w3.org/2001/XMLSchema
    "gt
  • lt!ENTITY rdf "http//www.w3.org/1999/02/22-rdf-
    syntax-ns"gt
  • gt
  • ltAtom xmlns"rif"gt
  • ltopgt
  • ltConst type"rifiri"gthttp//example.org/fa
    milyisFatherlt/Constgt
  • lt/opgt
  • ltargsgt
  • ltConst type"rifiri"gthttp//example.org/fa
    milyUwelt/Constgt
  • ltConst type"rifiri"gthttp//example.org/fa
    milyAdrianlt/Constgt
  • lt/argsgt
  • lt/Atomgt
  • lt!--XML document generated on Tue Dec 30 120816
    EST 2008--gt

34
Language options that you can implement
  • JenaRules is based on RDF(S) and uses the triple
    representation of RDF descriptions (see also N3
    Notation and Turtle Syntax).

35
Examples
  • ltexDriver rdfabout"http//example.com/John"gt
  • ltexstategtNew Yorklt/exstategt
  • ltexhasTrainingCertificate rdfdatatype"http//
    www.w3.org/2001/XMLSchemaboolean"gttruelt/exhasTra
    iningCertificategt
  • lt/exDrivergt
  • _at_prefix rdf http//www.w3.org/1999/02/22-rdf-synt
    ax-ns
  • _at_prefix ex http//example.com/
  • _at_prefix xs http//www.w3.org/2001/XMLSchema
  • eligibleDriver (?d rdftype exEligibleDriver)
  • lt-
  • (?d rdftype exDriver)
  • (?d exstate "New York")
  • (?d exhasTrainingCertificate
    "true"xsboolean)
  • Any driver living in New York and having training
    driver certificate is eligible for insurance.

36
A driver is young if has between 18 and 25 years
old.
  • ltexage rdfdatatype"http//www.w3.org/2001/XMLS
    chemainteger"gt21lt/exagegtltbrgt
  • lt/exDrivergt
  • _at_prefix rdf http//www.w3.org/1999/02/22-rdf-synt
    ax-ns
  • _at_prefix ex http//example.com/
  • _at_prefix xs http//www.w3.org/2001/XMLSchema
  • youngDriver (?d rdftype exYoungDriver)
  • lt-
  • (?d rdftype exDriver)
  • (?d exage ?a)
  • greaterThan(?a,18)
  • lessThan(?a,25)

37
Negation
  • ltexDriver rdfabout"http//example.com/John"gt
  • ltexnamegtJojn Smithlt/exnamegt
  • lt/exDrivergt
  • _at_prefix rdf http//www.w3.org/1999/02/22-rdf-synt
    ax-ns
  • _at_prefix ex http//example.com/
  • eligibleDriver (?d rdftype exTypicalDriver)
  • lt-
  • (?d rdftype exDriver)
  • noValue(?d rdftype
    exYoungDriver)
  • noValue(?d rdftype
    exSeniorDriver)

38
Multiple rules, split disjunction
  • ltexDriver rdfabout"http//example.com/John"gt
  • ltexstategtVancouverlt/exstategt
  • ltexaccidentsNumber rdfdatatype"http//www.w3.
    org/2001/XMLSchemainteger"gt1lt/exaccidentsNumbergt
  • lt/exDrivergt
  • _at_prefix rdf http//www.w3.org/1999/02/22-rdf-synt
    ax-ns
  • _at_prefix ex http//example.com/
  • eligibleDriver_1 (?d rdftype
    exEligibleDriver)
  • lt-
  • (?d rdftype exDriver)
  • (?d exstate "New York")
  • (?d exaccidentsNumber ?an)
  • lessThan(?an,2)
  • eligibleDriver_2 (?d rdftype
    exEligibleDriver)
  • lt-
  • (?d rdftype exDriver)
  • (?d exstate "Vancouver")
  • (?d exaccidentsNumber ?an)
  • lessThan(?an,2)

39
Using Protégé
  • SWRL plugin for editing rules
  • Jena (instructions for running the rule engine
    and using inference http//hydrogen.informatik.tu
    -cottbus.de/wiki/index.php/JenaRules)

40
Inference structure
41
Lastly and briefly
  • Jess rules (LISP-like)
  • Jess rules engine - http//herzberg.ca.sandia.gov/
    jess/
  • http//www.jessrules.com/jess/docs/Jess71p2.pdf

42
Implementation
  • Cover language representation choices, and
    knowledge engineering
  • Pull apart the use case
  • Tools and services
  • Architecture considerations and design choices

43
Languages
  • OWL
  • RDFS
  • SKOS
  • RIF
  • SPARQL
  • OWL-S

44
RDFS
  • Note XMLS not an ontology language
  • Changes format of DTDs (document schemas) to be
    XML
  • Adds an extensible type hierarchy
  • Integers, Strings, etc.
  • Can define sub-types, e.g., positive integers
  • RDFS is recognisable as an ontology language
  • Classes and properties
  • Sub/super-classes (and properties)
  • Range and domain (of properties)

45
However
  • RDFS too weak to describe resources in sufficient
    detail
  • No localized range and domain constraints
  • Cant say that the range of hasChild is person
    when applied to persons and elephant when applied
    to elephants
  • No existence/cardinality constraints
  • Cant say that all instances of person have a
    mother that is also a person, or that persons
    have exactly 2 parents
  • No transitive, inverse or symmetrical properties
  • Cant say that isPartOf is a transitive property,
    that hasPart is the inverse of isPartOf or that
    touches is symmetrical
  • Difficult to provide reasoning support
  • No native reasoners for non-standard semantics
  • May be possible to reason via First Order
    axiomatisation

46
OWL requirements
  • Desirable features identified for Web Ontology
    Language
  • Extends existing Web standards
  • Such as XML, RDF, RDFS
  • Easy to understand and use
  • Should be based on familiar KR idioms
  • Formally specified
  • Of adequate expressive power
  • Possible to provide automated reasoning support

47
The OWL language
  • Three species of OWL
  • OWL full is union of OWL syntax and RDF
  • OWL DL restricted to FOL fragment (¼ DAMLOIL)
  • OWL Lite is easier to implement subset of OWL
    DL
  • Semantic layering
  • OWL DL ¼ OWL full within DL fragment
  • DL semantics officially definitive
  • OWL DL based on SHIQ Description Logic
  • In fact it is equivalent to SHOIN(Dn) DL
  • OWL DL Benefits from many years of DL research
  • Well defined semantics
  • Formal properties well understood (complexity,
    decidability)
  • Known reasoning algorithms
  • Implemented systems (highly optimized)

48
(No Transcript)
49
OWL Class Constructors
50
OWL axioms
51
SKOS properties
  • skosnote
  • e.g. Anything goes.
  • skosdefinition
  • e.g. A long curved fruit with a yellow skin and
    soft, sweet white flesh inside.
  • skosexample
  • e.g. A bunch of bananas.
  • skosscopeNote
  • e.g. Historically members of a sheriff's retinue
    armed with pikes who escorted judges at assizes.
  • skoshistoryNote
  • e.g. Deleted 1986. See now Detention,
    Institutionalization (Persons), or
    Hospitalization.
  • skoseditorialNote
  • e.g. Confer with Mr. X. re deletion.
  • skoschangeNote
  • e.g. Promoted love to preferred label, demoted
    affection to alternative label, Joe Bloggs,
    2005-08-09.

52
SKOS core and RDFS/OWL
  • Disjoint?
  • Should skosConcept be disjoint with
  • rdfProperty ?
  • rdfsClass ?
  • owlClass ?
  • DL?
  • Should SKOS Core be an OWL DL ontology?
  • Means not allowing flexibility in range of
    documentation props
  • It is now (2008)!

53
OWL 2
  • http//www.w3.org/2007/OWL/wiki/OWL_Working_Group
  • http//www.w3.org/2007/OWL/wiki/ImageOwl2-refcard
    _2008-09-24.pdf

54
Tutorial Summary
  • Many different options for ontology querying -
    none are standard
  • RDF query is most advanced
  • Inference needs and choice will depend on
    descriptive requirements (e.g. DL, Full, RDF,
    etc.)
Write a Comment
User Comments (0)
About PowerShow.com