Title: Chapter 9 Lecture 1
1Chapter 9 Lecture 1
- The limits of correlational research and the
logic of experimentation.
2Concepts
- The limits of correlation
- The experimental method
- Comparing Mean Squares between groups to Mean
Squares within groups
3The limits of correlational research
- Correlational research tells us that variables
are related. - It does not tell us what causes that
relationship. - The relationship could be caused by some other,
unstudied variable.
4The 3rd variable problem.
- In correlational research we started with
participants who were different from each other
in at least 2 ways. - Participants who differ in 2 ways will differ in
3 ways, in 3000 ways, in an almost infinite
number of ways and combinations of ways. - Any of these other ways in which participants
differ from each other may be responsible for the
relationship between X and Y you find in a
correlational study
5So
- There are an infinite number of such unstudied
3rd variables and combinations of variables - So even though you can predict one thing from
another, you dont know what causes either or
what to change to get either X or Y to change
6An example of 3rd variable causation
- Randomly select participants. Find out how many
friends each has and how many days each was ill
and stayed home from work last year. - Results more friends are significantly
correlated with less sick days. - Using the regression equation, you can predict
how many days a person will be ill if you know
how many friends they have. - Can you conclude social support protects against
stress and illness? NO! - What else might cause the relationship you found?
7Alternative Explanations
- Perhaps people with generally better immune
systems get ill less often. - If such people are generally healthier, they may
have time and energy to be outgoing and to spend
with friends. - So better immune function may cause both fewer
sick days and more friendships. - Or something else (e.g., gregariousness and
robust health are genetically linked) - Or a combination of factors control the
relationship between days ill and number of
friends.
8Another Example
- You can predict who will commit suicide by simply
finding the time that people wake up in the
morning. - The earlier you wake up, the more likely you are
to commit suicide. - To make prediction more accurate take into
account (control for) other factors (e.g. age,
gender, shift work). - But you can really predict suicide from the time
people wake up the two are correlated in the
population as a whole.
9WHY????
- Is it that waking up when it is dark is
depressing? - Is it that suicidal people are so worried they
cant sleep? - NO!!
- The same biochemical lesion that makes people
vulnerable to clinical depression also affects
circadian rhythms. The biological clock of people
with depression is set earlier. They get tired
earlier and wake up earlier. - A classic symptom of depression is early morning
awakening. - So, depression causes both heightened levels of
suicide and waking up early
10You can write prescriptions for change only if
you know causes
- If waking up early directly causes suicide, you
should give people sleeping pills. - Give depressed people sleeping pills and you get
more suicide, not less. - Instead you must treat the cause, depression,
with psychotherapy and/or antidepressant
medication
11If you want to change things, you need experiments
- The lesson is that correlational research can
never tell you how to cause a change in Y. - Experimental research can isolate causal factors.
- Then, you can change things by altering what
causes them. - Like curing depression gets rid of both the
desire to commit suicide and waking early.
12Remember, there is no way to know what causes
what on the basis of correlational studies. Only
experimentation can provide causal information.
13SO WE NEED EXPERIMENTAL RESEARCH IF WE ARE TO
HELP PEOPLE KNOW HOW TO CHANGE THINGS
14How and why experiments can find causal
relationships
15The Key Start with groups that are the same, not
different
- In an experiment, you start off with a random
sample of participants drawn from the population
of interest. - Then you randomly assign participants to
experimental groups. - Each experimental group is therefore a random
sample of the population.
16Since each group is a random sample of the same
population
- The typical score in each group, the group mean,
will be similar to the population mean. - The spread of scores around the group mean will
be similar to the spread of scores around the
population mean. - So, the mean and variance of each group is
similar to that of the population. - Things that are similar to a third thing (mu and
sigma) are similar to each other. - That is, the average score and spread of scores
will be similar in all the groups.
17ON WHAT MEASURE(S) ARE THE GROUPS THE SAME?? ON
EVERY POSSIBLE MEASURE!!!
- Hairs on heads, size of great aunts backyard,
your self-confidence multiplied by your
grandmothers self confidence, the size of your
mothers left thumb, how nice your third grade
teacher was - ETCETERA, ETCETERA, ETCETERA.
18If the groups are similar in every way, no
pre-existing differences can account for
differences after the experimental treatments.
- That is the groups all start off the same in
every way. - The ways the groups are the same include all the
preexisting differences (and combination of
differences) that underlie the 3rd variable
explanation in correlational research.
19Since the groups all start off the same, the only
thing about them that will systematically differ
is how we treat themIf, after we treat them
differently, they respond differently, it will be
because of the different ways they were treated.
20During an experiment
- Groups start off the same
- Groups are TREATED DIFFERENTLY
- Responses thought to be effected by the different
treatments are measured - If the average response in the groups is now
different from each other, the differences may
well have been caused by the different ways the
groups were treated.
21In the simplest experiments
- The groups are exposed to treatments that vary on
a single dimension. - The dimension that differs is called the
independent variable (because, given that who
gets which treatment is random, differences in
treatment during the experiment are unrelated to
or independent of pre-existing differences). - Relevant responses (called dependent variables)
are then measured to see whether the independent
variable caused differences among the treatment
conditions beyond those expected given ordinary
sampling fluctuation.
22Analysing data from an experiment
- Of course the groups will always differ somewhat
from each other on anything you measure due to
sampling fluctuation. - These are just random difference, you can afford
those - In 3 groups, one will score highest, one lowest
and one in the middle just by chance. - So the simple fact that the groups differ
somewhat is not enough to determine that the
independent variable, the different ways the
groups were treated, caused the differences. - We have to determine whether the groups are more
different than they should be if only sampling
fluctuation is at work.
23Example ECT, Pills or Psychotherapy?
- We know that for severe, psychotic depression,
electroconvulsive therapy (ECT) is the most
effective treatment. - A managed care company wants everyone
hospitalized for depression to be given ECT, even
those with only moderately severe depression. - They say that antidepressant medication and
cognitive therapy take longer to work, require
maintenance treatment and are ultimately more
expensive, so everyone should get shock.
24What can you do about it?
- Just because they can plausibly say that ECT is
better, doesnt mean it is so. - Would you like to be given a choice if the
treatments are equally effective, though one
costs your insurance company less than the
others. - How about running an experiment meant to show
that medication and psychotherapy work as well or
better than ECT with moderately depressed
patients, that there are no differences in the
effectiveness of the differing forms of treatment.
25Designing the experiment
- Population from which random sample was gathered
Moderately depressed inpatients - Number of research participants and groups 9
participants divided equally into 3 groups - Experimental design Single factor, unrelated
groups design.
26Design - continued
- Independent variable Type of treatment
- Levels of the independent variable
- (1) Electroconvulsive Therapy
- (2) Cognitive Behavioral Therapy
- (3) Antidepressant Medication
- Dependent variable Hamilton Rating Scale
Depression Scores (HAM-D) - (Higher scores greater depression.)
27H0 H1 Mutually exclusive and exhaustive
hypotheses. If one is wrong, the other must be
right.
- Either the independent variable would cause
differences in responses (the dependent variable)
in the population as a whole or it would not. - H0 The different conditions embodied by the
independent variable would have NO EFFECT if
administered to the whole population - H1 The different conditions embodied by the
independent variable would produce different
responses if administered to the whole
population. In this case, one or two of the
treatments will do better than the other(s).
28The Null Hypothesis keeps us from a truly
shocking situation
- The null hypothesis (H0) states that the only
reason that the treatment means are different is
sampling fluctuation. It says that the
independent variable causes no systematic
differences among the groups. - A corollary Try the experiment again and a
different group will score highest, another
lowest. If that is so, you should not generalize
from which group in your study scored highest or
lowest to the population from which the samples
were drawn.
29The null hypothesis must be retained or rejected
- The way we do statistical tests on experimental
data is the same way we did it in Ch. 6 and Ch.8 - H0 make a prediction of what our sample statistic
will be. - We establish a 95 confidence interval for that
prediction. - We see whether the sample statistic falls inside
or outside the confidence interval. - Inside retain H0
- Outside reject H0, look around for another
possible explanation, probably accept H1.
30THE ONLY HYPOTHESIS TESTED STATISTICALLY IS THE
NULL HYPOTHESIS.
- Therefore any statistical statements made can
only be about the null hypothesis. - In analyzing the results of an experiment, you
must either find that your results are
statistically significant and (because H0 has
predicted badly) declare the null false and
reject it. - Or you can get nonsignificant results, fail to
reject the null, and be unable to extrapolate
from the differences among your experimental
(treatment) groups to the population.
31The Experimental Hypothesis
- The experimental hypothesis (H1) states that
between group differences on the dependent
variable are caused by the independent variable
as well as by sampling fluctuation. - Unlike the null, H1 is different in each
experiment. - The experimental hypothesis tells us the way(s)
we must treat the groups differently and what to
measure. - Therefore the experimental hypothesis tells us
(in broad terms) how to design the experiment.
32YOU NEVER TEST THE EXPERIMENTAL HYPOTHESIS
STATISTICALLY.
- You can only examine the data in light of the
experimental hypothesis after rejecting the null. - Good research design makes the experimental
hypothesis the only reasonable alternative to the
null. - Accepting the experimental hypothesis is based on
good research design and logic, not statistical
tests.
33Remember
- If the groups start off the same, then the
subsequent differences in measured responses may
be due to the differing treatments the groups
receive as well as to sampling fluctuation. - The independent variable (IV) consists of the
treatment conditions. Note that since
participants are randomly assigned to groups, who
gets a treatment is unrelated to (independent of)
pre-existing differences - The dependent variable consists of relevant
responses that are observed.