Title: Magnetic fields in star forming regions: theory
1Magnetic fields in star
forming regions theory
- Daniele Galli
- INAF-Osservatorio di Arcetri
- Italy
2Outline
- Zeeman effect and polarization
- Models of magnetized clouds
- Magnetic braking
- Equilibrium
- Stability
- Quasistatic evolution
- Dynamical collapse
3ApJ, 5, 332 (1897)
2 citations (source ADS) 1 Nobel prize
Pieter Zeeman (1865 1943)
4Basic observational techniques Zeeman effect
and polarization
5The Zeeman effect in OH toward Orion B
OH line profile
Stokes V spectrum (RCP-LCP) DnZeeman ltlt Dnline
in molecular clouds
Bourke et al. (2001)
6Zeeman measurements in molecular clouds
(mG)
B r1/2
è
(cm-3)
Crutcher (1999)
7Summary of Zeeman measurements
H2O masers
OH masers
molecular clouds
SiO masers
HI gas
Vallée (1997)
8Polarization
(Weintraub et al. 2000)
9Polarization map of background starlight
in the Milky Way
Ophiuchus
Taurus
Orion
Mathewson Ford (1970)
10The magnetic field in M51
optical polarization (Scarrott et al. 1987)
radio synchrotron polarization (Beck et al.
1987)
11Optical polarization map of Taurus
5 pc
Moneti et al. (1984), Heyer et al. (1987)
12Weintraub et al. (2000)
13(Weintraub et al. 2000)
14Hourglass field geometry in OMC-1?
Schleuning (1998)
15Barnard 1 at 850 mm
Matthews Wilson (2002)
16Submillimiter polarization in cloud cores
L183
L1544
Ward-Thompson et al. (2000)
17Models of magnetized clouds I. Equilibrium
18force balance
no monopoles
Poissons equation
System of 5 quasi-linear PDEs in 5 unknowns
- known solutions
- axisymmetric Mouschovias, Nakano, Tomisaka, etc.
- cylindrical Chandraskhar Fermi, etc.
- helical Fiege Pudritz, etc.
19Axially symmetric magnetostatic models
3-D
2-D
Li Shu (1996), Galli et
al. (1999)
Shu et al. (2000), Galli
et al. (2001)
20line-of-sight
21Gonçalves, Galli, Walmsley (2004)
22Models of magnetized clouds II. Stability
23The magnetic virial theorem
the magnetic critical mass
the critical mass-to-flux ratio
Chandrasekhar Fermi (1953), Mestel Spitzer
(1956), Strittmatter (1966)
24The role of the magnetic critical mass
stable
unstable
Boyles law
25 Summary of stability conditions
- Cloud supported by thermal pressure
McrMJ, the Jeans mass - Cloud supported by magnetic fields
McrMF - In general, Mcr MJMF to within 5
(McKee 1989) - For T10 K, n105 cm-3, R0.1 pc, B10 mG
MJ MF 1 M8
26R
mass M
magnetic flux F
m
eR
f
27R
eR
28The magnetic mass-to-flux ratio observations
M/F 0.1
1
10
M/F 0.1
1
10
Bourke et al. (2001)
29The magnetic flux problem
- Molecular clouds
F/M (F/M)cr - Magnetic stars with 1-30 kG fields
F/M 10-5 10-3 (F/M)cr - Ordinary stars (e.g. the Sun)
F/M 10-8 (F/M)cr
30Models of magnetized clouds II. Quasistatic
evolution
31Ionisation fraction in molecular clouds
Bergin et al. (1999)
32Field-plasma coupling
- gyration frequency w qB/mc
- collision time with neutrals t 1/ n ltsvrelgt
- example n104 cm-3, B10 mG
- (wt)electrons107, (wt)ions103 gtgt1
-
- magnetic field well coupled to the plasma
33Effects of the field on the neutrals
- The field acts on neutrals indirectly only
through collisions between neutral and charged
particles - frictional force on the neutrals
Fnimin ni nn ltsvrelgtin (vi-vn) - The field slips through the neutrals at a
velocity - vdrift vi-vn that depends on the field
strength and the ionisation fraction (Mestel
Spitzer 1956) -
-
-
-
34Diffusion of the magnetic field
vdrift
(F/M)in
tad
F/Mlt(F/M)in
35Timescale of magnetic flux loss
- at n104 cm-3, xe10-7, M/F(M/F)cr,, L0.1 pc
- ambipolar diffusion timescale
- Ohmic dissipation timescale
1-10 Myr
1015 yr
36Density distribution and magnetic fieldlines
15.17 Myr
7.1 Myr
15.23195 Myr
15.2308 Myr
Desch Mouschovias (2001)
37Evolution of the central density
t0
t1
t2
Desch Mouschovias (2001)
38The velocity and mass-to-flux radial profiles
supercritical
subsonic
t0
t2
t1
t2
t1
t0
subcritical
supersonic
Desch Mouschovias (2001)
39Core evolution by ambipolar diffusion
R0.75 pc
M10 M8
n103-107 cm-3
vmax0.4 km s-1
Fiedler Mouschovias (1992,1993)
40Models of magnetized clouds II. Collapse
41The equations of magnetohydrodynamics
42t 5.7x104 yr
t 0
Singular isothermal sphere with uniform
magnetic field
Galli Shu (1993)
43t 1.1x105 yr
44t 1.7x105 yr
45Magnetic reconnection
Mestel Strittmatter (1966)
46Magnetic braking
47The angular momentum problem
- 1M of ISM (n 1 cm-3, W 10-15 rad/s)
J/M 1022 cm2/s - 1M dense core (n 104 cm-3, W 1 km s-1/pc)
J/M 1021 cm2/s - 1M wide binary (T 100 yr)
J/M 1020 cm2/s - Solar system
J/M 1018 cm2/s
8
8
8
48Magnetic Braking
- Magnetic fields can redistribute angular momentum
away from a collapsing region -
- Outgoing torsional Alfvèn waves must couple with
mass equal to mass in collapsing region
(Mouschovias Paleologou 1979, 1980) - Timescale for magnetic braking
r0
r
tb r R/(2r0vA)
49- MHD waves transport angular momentum from the
core to the envelope - magnetic braking timescale shorter than ambipolar
diffusion, but longer than free-fall - during ambipolar diffusion stage, core corotates
with envelope (Wconst.) - in supercritical collapse, specific angular
momentum is conserved (J/Mconst.)
50Magnetic braking observations
J/M
W const.
J/M const.
wide binary
Solar system
R
Ohashi et al. (1997)
51Conclusions
- Zeeman effect and polarization
- Models of magnetized clouds
- Magnetic braking
- Equilibrium
- Stability
- Quasistatic evolution
- Dynamical collapse