Magnetic fields in star forming regions: theory - PowerPoint PPT Presentation

About This Presentation
Title:

Magnetic fields in star forming regions: theory

Description:

OH line profile. Stokes V spectrum (RCP-LCP) DnZeeman Dnline in molecular clouds ... Optical polarization map of Taurus. 5 pc. Moneti et al. (1984), Heyer ... – PowerPoint PPT presentation

Number of Views:108
Avg rating:3.0/5.0
Slides: 46
Provided by: daniel115
Category:

less

Transcript and Presenter's Notes

Title: Magnetic fields in star forming regions: theory


1
Magnetic fields in star
forming regions theory
  • Daniele Galli
  • INAF-Osservatorio di Arcetri
  • Italy

2
Outline
  • Zeeman effect and polarization
  • Models of magnetized clouds
  • Magnetic braking
  • Equilibrium
  • Stability
  • Quasistatic evolution
  • Dynamical collapse

3
ApJ, 5, 332 (1897)
2 citations (source ADS) 1 Nobel prize
Pieter Zeeman (1865 1943)
4
Basic observational techniques Zeeman effect
and polarization
5
The Zeeman effect in OH toward Orion B
OH line profile
Stokes V spectrum (RCP-LCP) DnZeeman ltlt Dnline
in molecular clouds
Bourke et al. (2001)
6
Zeeman measurements in molecular clouds
(mG)
B r1/2
è
(cm-3)
Crutcher (1999)
7
Summary of Zeeman measurements
H2O masers
OH masers
molecular clouds
SiO masers
HI gas
Vallée (1997)
8
Polarization
(Weintraub et al. 2000)
9
Polarization map of background starlight
in the Milky Way
Ophiuchus
Taurus
Orion
Mathewson Ford (1970)
10
The magnetic field in M51
optical polarization (Scarrott et al. 1987)
radio synchrotron polarization (Beck et al.
1987)
11
Optical polarization map of Taurus
5 pc
Moneti et al. (1984), Heyer et al. (1987)
12
Weintraub et al. (2000)
13
(Weintraub et al. 2000)
14
Hourglass field geometry in OMC-1?
Schleuning (1998)
15
Barnard 1 at 850 mm
Matthews Wilson (2002)
16
Submillimiter polarization in cloud cores
L183
L1544
Ward-Thompson et al. (2000)
17
Models of magnetized clouds I. Equilibrium
18
force balance
no monopoles
Poissons equation
System of 5 quasi-linear PDEs in 5 unknowns
  • known solutions
  • axisymmetric Mouschovias, Nakano, Tomisaka, etc.
  • cylindrical Chandraskhar Fermi, etc.
  • helical Fiege Pudritz, etc.

19
Axially symmetric magnetostatic models
3-D
2-D
Li Shu (1996), Galli et
al. (1999)
Shu et al. (2000), Galli
et al. (2001)
20
line-of-sight
21
Gonçalves, Galli, Walmsley (2004)
22
Models of magnetized clouds II. Stability
23
The magnetic virial theorem
the magnetic critical mass
the critical mass-to-flux ratio
Chandrasekhar Fermi (1953), Mestel Spitzer
(1956), Strittmatter (1966)
24
The role of the magnetic critical mass
stable
unstable
Boyles law
25

Summary of stability conditions
  • Cloud supported by thermal pressure
    McrMJ, the Jeans mass
  • Cloud supported by magnetic fields
    McrMF
  • In general, Mcr MJMF to within 5
    (McKee 1989)
  • For T10 K, n105 cm-3, R0.1 pc, B10 mG
    MJ MF 1 M8

26
R
mass M
magnetic flux F
m
eR
f
27
R
eR
28
The magnetic mass-to-flux ratio observations
M/F 0.1
1
10
M/F 0.1
1
10
Bourke et al. (2001)
29
The magnetic flux problem
  • Molecular clouds
    F/M (F/M)cr
  • Magnetic stars with 1-30 kG fields
    F/M 10-5 10-3 (F/M)cr
  • Ordinary stars (e.g. the Sun)
    F/M 10-8 (F/M)cr

30
Models of magnetized clouds II. Quasistatic
evolution
31
Ionisation fraction in molecular clouds
Bergin et al. (1999)
32
Field-plasma coupling
  • gyration frequency w qB/mc
  • collision time with neutrals t 1/ n ltsvrelgt
  • example n104 cm-3, B10 mG
  • (wt)electrons107, (wt)ions103 gtgt1
  • magnetic field well coupled to the plasma

33
Effects of the field on the neutrals
  • The field acts on neutrals indirectly only
    through collisions between neutral and charged
    particles
  • frictional force on the neutrals
    Fnimin ni nn ltsvrelgtin (vi-vn)
  • The field slips through the neutrals at a
    velocity
  • vdrift vi-vn that depends on the field
    strength and the ionisation fraction (Mestel
    Spitzer 1956)

34
Diffusion of the magnetic field
vdrift
(F/M)in
tad
F/Mlt(F/M)in
35
Timescale of magnetic flux loss
  • at n104 cm-3, xe10-7, M/F(M/F)cr,, L0.1 pc
  • ambipolar diffusion timescale
  • Ohmic dissipation timescale

1-10 Myr
1015 yr
36
Density distribution and magnetic fieldlines
15.17 Myr
7.1 Myr
15.23195 Myr
15.2308 Myr
Desch Mouschovias (2001)
37
Evolution of the central density
t0
t1
t2
Desch Mouschovias (2001)
38
The velocity and mass-to-flux radial profiles
supercritical
subsonic
t0
t2
t1
t2
t1
t0
subcritical
supersonic
Desch Mouschovias (2001)
39
Core evolution by ambipolar diffusion
R0.75 pc
M10 M8
n103-107 cm-3
vmax0.4 km s-1
Fiedler Mouschovias (1992,1993)
40
Models of magnetized clouds II. Collapse
41
The equations of magnetohydrodynamics
  • equation of continuity
  • equation of momentum
  • induction equation
  • no monopoles
  • Poissons equation

42
t 5.7x104 yr
t 0
Singular isothermal sphere with uniform
magnetic field
Galli Shu (1993)
43
t 1.1x105 yr
44
t 1.7x105 yr
45
Magnetic reconnection
Mestel Strittmatter (1966)
46
Magnetic braking
47
The angular momentum problem
  • 1M of ISM (n 1 cm-3, W 10-15 rad/s)
    J/M 1022 cm2/s
  • 1M dense core (n 104 cm-3, W 1 km s-1/pc)
    J/M 1021 cm2/s
  • 1M wide binary (T 100 yr)
    J/M 1020 cm2/s
  • Solar system
    J/M 1018 cm2/s

8
8
8
48
Magnetic Braking
  • Magnetic fields can redistribute angular momentum
    away from a collapsing region
  • Outgoing torsional Alfvèn waves must couple with
    mass equal to mass in collapsing region
    (Mouschovias Paleologou 1979, 1980)
  • Timescale for magnetic braking

r0
r
tb r R/(2r0vA)
49
  • MHD waves transport angular momentum from the
    core to the envelope
  • magnetic braking timescale shorter than ambipolar
    diffusion, but longer than free-fall
  • during ambipolar diffusion stage, core corotates
    with envelope (Wconst.)
  • in supercritical collapse, specific angular
    momentum is conserved (J/Mconst.)

50
Magnetic braking observations
J/M
W const.
J/M const.
wide binary
Solar system
R
Ohashi et al. (1997)
51
Conclusions
  • Zeeman effect and polarization
  • Models of magnetized clouds
  • Magnetic braking
  • Equilibrium
  • Stability
  • Quasistatic evolution
  • Dynamical collapse
Write a Comment
User Comments (0)
About PowerShow.com