Thermal transport in mesoscopic hybrid nanostructures: application to refrigeration - PowerPoint PPT Presentation

1 / 43
About This Presentation
Title:

Thermal transport in mesoscopic hybrid nanostructures: application to refrigeration

Description:

Thermal transport in mesoscopic hybrid nanostructures: application to refrigeration – PowerPoint PPT presentation

Number of Views:126
Avg rating:3.0/5.0
Slides: 44
Provided by: laboratori66
Category:

less

Transcript and Presenter's Notes

Title: Thermal transport in mesoscopic hybrid nanostructures: application to refrigeration


1
Thermal transport in mesoscopic hybrid
nanostructures application to refrigeration
Francesco Giazotto NEST CNR-INFM and Scuola
Normale Superiore Pisa, ITALY
Physique Quantique Mésoscopique
Aussois, France, 19-22 March 2007
2
Collaboration
F. Taddei, C. Castellana S. Tirelli C. Pascual
Garcia R. Fazio F. Beltram NEST CNR-INFM and
Scuola Normale Superiore, Pisa, Italy M.
Governale Institut für Theoretische Physik III,
Bochum, Germany F. W. J. Hekking CNRS
Université Joseph Fourier, Grenoble, France J.
P. Pekola O.-P. Saira T. T. Heikkilä N. Kopnin M.
Meschke A. M. Savin Helsinki University of
Technology, HUT, Helsinki, Finland
3
Outline
  • Part I Heat transport superconducting tunnel
    nanostructures
  • NIS tunnel junctions
  • Electron cooling
  • Lattice cooling
  • SIS and SmS junctions
  • Part II Heat transport with ferromagnets and
    magnetic barriers
  • FS junctions operation principle performance
  • 2DEG-S systems with localized magnetic fields
  • Part III Heat transport in 2DEG-N systems in
    quantizing magnetic fields
  • Operation principle performance
  • Electron refrigeration in 2DEG systems

4
Electronic microrefrigeration motivations
  • On-chip cooling (e.g., detectors, transistors)
  • Realization of solid state refrigerators
  • (from room temperature to millikelvin range)
  • Possibility to reach very low (electron)
    temperatures by direct electronic refrigeration
    (eventually in the micro-K range)
  • Control of electron distribution leads to new
    effects and devices (e.g., superconducting
    transistor, spin sources, magnetization control)

5
SIN electron coolers operation principle
6
SIN electron coolers electric behavior
7
Injection vs relaxation
8
Energy relaxation in metals
9
SINIS electron coolers performance
10
SINIS metallic electron coolers fabrication
  • Angle SME
  • Al Thermal oxidation
  • Al and/or Ti (S leads)
  • Cu, Ag, AlMn (N region)

11
SINIS refrigerators
12
Electron cooling with SIS SmS refrigerators
13
Lattice cooling with NIS refrigerators
14
Electron cooling in FS junction
FG et al., APL 80, 3784 (2002)
15
FS cooler performance I
16
Electric transport in SN contacts
17
Generation of localized magnetic fields
18
Electric transport through localized fields
experiments
19
Superconductor-2DEG junction with a localized
magnetic field
20
Differential conductance
  • Different regimes
  • transparent junction
  • tunnel-like junction

21
Differential conductance
22
Requirements and applications
23
Heat transport in the presence of localized
magnetic fields
24
Performance
25
Electronic refrigeration model
26
Electronic refrigeration performance
27
Landau cooling in 2DEG-N nanostructures
F.G. et al., cond-mat/0703119 (2007)
28
Landau cooling I
29
Landau cooling II
30
Landau cooling electron refrigeration
31
Summary
32
Landau cooling III
33
SINIS-controlled Josephson weak links
34
Presence of inelastic scattering
35
SINIS quasiparticle distribution function
No inelastic scattering
BCS DOS
36
Transport regimes
Strong e-ph interaction (Tgt10K) local potential.
Strong e-e interaction effective T(x)
(hot-electron regime)
Only elastic scattering double-step distribution
(mesoscopic regime)
37
Normal metal control line quasiparticle
distribution
VC
Nr
V Vc/2
L
Nl
V -Vc/2
eVc
38
SER performance
J. Pekola, FG, and O.P. Saira, Phys. Rev Lett.
98, 037201 (2007)
39
Membranes cooling
40
Proximity effect and supercurrent
41
Heat transistor
O.P. Saira et al., cond-mat/0702361
42
FS cooler performance II
COP ?out / ?in
COP 23
Al/CrO2 (half-metallic ferromagnet)
43
Radio-frequency single-electron refrigerator (SER)
J. Pekola, FG, and O.P. Saira, Phys. Rev Lett.
98, 037201 (2007)
Write a Comment
User Comments (0)
About PowerShow.com