Ordered probit models - PowerPoint PPT Presentation

About This Presentation
Title:

Ordered probit models

Description:

Ordered probit models – PowerPoint PPT presentation

Number of Views:740
Avg rating:3.0/5.0
Slides: 31
Provided by: mprc8
Learn more at: https://www3.nd.edu
Category:
Tags: models | ordered | probit | u2

less

Transcript and Presenter's Notes

Title: Ordered probit models


1
Ordered probit models
2
Ordered Probit
  • Many discrete outcomes are to questions that have
    a natural ordering but no quantitative
    interpretation
  • Examples
  • Self reported health status
  • (excellent, very good, good, fair, poor)
  • Do you agree with the following statement
  • Strongly agree, agree, disagree, strongly disagree

3
  • Can use the same type of model as in the previous
    section to analyze these outcomes
  • Another latent variable model
  • Key to the model there is a monotonic ordering
    of the qualitative responses

4
Self reported health status
  • Excellent, very good, good, fair, poor
  • Coded as 1, 2, 3, 4, 5 on National Health
    Interview Survey
  • We will code as 5,4,3,2,1 (easier to think of
    this way)
  • Asked on every major health survey
  • Important predictor of health outcomes, e.g.
    mortality
  • Key question what predicts health status?

5
  • Important to note the numbers 1-5 mean nothing
    in terms of their value, just an ordering to show
    you the lowest to highest
  • The example below is easily adapted to include
    categorical variables with any number of outcomes

6
Model
  • yi latent index of reported health
  • The latent index measures your own scale of
    health. Once yi crosses a certain value you
    report poor, then good, then very good, then
    excellent health

7
  • yi (1,2,3,4,5) for (fair, poor, VG, G, excel)
  • Interval decision rule
  • yi1 if yi u1
  • yi2 if u1 lt yi u2
  • yi3 if u2 lt yi u3
  • yi4 if u3 lt yi u4
  • yi5 if yi gt u4

8
  • As with logit and probit models, we will assume
    yi is a function of observed and unobserved
    variables
  • yi ß0 x1i ß1 x2i ß2 . xki ßk ei
  • yi xi ß ei

9
  • The threshold values (u1, u2, u3, u4) are
    unknown. We do not know the value of the index
    necessary to push you from very good to
    excellent.
  • In theory, the threshold values are different for
    everyone
  • Computer will not only estimate the ßs, but also
    the thresholds average across people

10
  • As with probit and logit, the model will be
    determined by the assumed distribution of e
  • In practice, most people pick nornal, generating
    an ordered probit (I have no idea why)
  • We will generate the math for the probit version

11
Probabilities
  • Lets do the outliers, Pr(yi1) and Pr(yi5) first
  • Pr(yi1)
  • Pr(yi u1)
  • Pr(xi ß ei u1 )
  • Pr(ei u1 - xi ß)
  • Fu1 - xi ß 1- Fxi ß u1

12
  • Pr(yi5)
  • Pr(yi gt u4)
  • Pr(xi ß ei gt u4 )
  • Pr(ei gt u4 - xi ß)
  • 1 - Fu4 - xi ß Fxi ß u4

13
Sample one for y3
  • Pr(yi3) Pr(u2 lt yi u3)
  • Pr(yi u3) Pr(yi u2)
  • Pr(xi ß ei u3) Pr(xi ß ei u2)
  • Pr(ei u3- xi ß) - Pr(ei u2 - xi ß)
  • Fu3- xi ß - Fu2 - xi ß
  • 1 - Fxi ß - u3 1 Fxi ß - u2
  • Fxi ß - u2 - Fxi ß - u3

14
Summary
  • Pr(yi1) 1- Fxi ß u1
  • Pr(yi2) Fxi ß u1 - Fxi ß u2
  • Pr(yi3) Fxi ß u2 - Fxi ß u3
  • Pr(yi4) Fxi ß u3 - Fxi ß u4
  • Pr(yi5) Fxi ß u4

15
Likelihood function
  • There are 5 possible choices for each person
  • Only 1 is observed
  • L Si lnPr(yik) for k

16
Programming example
  • Cancer control supplement to 1994 National Health
    Interview Survey
  • Question what observed characteristics predict
    self reported health (1-5 scale)
  • 1poor, 5excellent
  • Key covariates income, education, age, current
    and former smoking status
  • Programs
  • sr_health_status.do, .dta, .log

17
  • desc
  • male byte 9.0g 1 if male
  • age byte 9.0g age in years
  • educ byte 9.0g years of
    education
  • smoke byte 9.0g current smoker
  • smoke5 byte 9.0g smoked in past 5
    years
  • black float 9.0g 1 if respondent
    is black
  • othrace float 9.0g 1 if other race
    (white is ref)
  • sr_health float 9.0g 1-5 self reported
    health,

  • 5excel, 1poor
  • famincl float 9.0g log family income

18
  • tab sr_health
  • 1-5 self
  • reported
  • health,
  • 5excel,
  • 1poor Freq. Percent Cum.
  • -----------------------------------------------
  • 1 342 2.65 2.65
  • 2 991 7.68 10.33
  • 3 3,068 23.78 34.12
  • 4 3,855 29.88 64.00
  • 5 4,644 36.00 100.00
  • -----------------------------------------------
  • Total 12,900 100.00

19
In STATA
  • oprobit sr_health male age educ famincl black
    othrace smoke smoke5

20
  • Ordered probit estimates
    Number of obs 12900

  • LR chi2(8) 2379.61

  • Prob gt chi2 0.0000
  • Log likelihood -16401.987
    Pseudo R2 0.0676
  • --------------------------------------------------
    ----------------------------
  • sr_health Coef. Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • male .1281241 .0195747 6.55
    0.000 .0897583 .1664899
  • age -.0202308 .0008499 -23.80
    0.000 -.0218966 -.018565
  • educ .0827086 .0038547 21.46
    0.000 .0751535 .0902637
  • famincl .2398957 .0112206 21.38
    0.000 .2179037 .2618878
  • black -.221508 .029528 -7.50
    0.000 -.2793818 -.1636341
  • othrace -.2425083 .0480047 -5.05
    0.000 -.3365958 -.1484208
  • smoke -.2086096 .0219779 -9.49
    0.000 -.2516855 -.1655337
  • smoke5 -.1529619 .0357995 -4.27
    0.000 -.2231277 -.0827961
  • -------------------------------------------------
    ----------------------------
  • _cut1 .4858634 .113179
    (Ancillary parameters)
  • _cut2 1.269036 .11282

21
Interpret coefficients
  • Marginal effects/changes in probabilities are now
    a function of 2 things
  • Point of expansion (xs)
  • Frame of reference for outcome (y)
  • STATA
  • Picks mean values for xs
  • You pick the value of y

22
Continuous xs
  • Consider y5
  • d Pr(yi5)/dxi
  • d Fxi ß u4/dxi ßfxi ß u4
  • Consider y3
  • d Pr(yi3)/dxi ßfxi ß u3 - ßfxi ß u4

23
Discrete Xs
  • xi ß ß0 x1i ß1 x2i ß2 . xki ßk
  • X2i is yes or no (1 or 0)
  • ?Pr(yi5)
  • Fß0 x1i ß1 ß2 x3i ß3 .. xki ßk
  • - Fß0 x1i ß1 x3i ß3 . xki ßk
  • Change in the probabilities when x2i1 and x2i0

24
Ask for marginal effects
  • mfx compute, predict(outcome(5))

25
  • mfx compute, predict(outcome(5))
  • Marginal effects after oprobit
  • y Pr(sr_health5) (predict, outcome(5))
  • .34103717
  • --------------------------------------------------
    ----------------------------
  • variable dy/dx Std. Err. z Pgtz
    95 C.I. X
  • -------------------------------------------------
    ----------------------------
  • male .0471251 .00722 6.53 0.000
    .03298 .06127 .438062
  • age -.0074214 .00031 -23.77 0.000
    -.008033 -.00681 39.8412
  • educ .0303405 .00142 21.42 0.000
    .027565 .033116 13.2402
  • famincl .0880025 .00412 21.37 0.000
    .07993 .096075 10.2131
  • black -.0781411 .00996 -7.84 0.000
    -.097665 -.058617 .124264
  • othrace -.0843227 .01567 -5.38 0.000
    -.115043 -.053602 .04124
  • smoke -.0749785 .00773 -9.71 0.000
    -.09012 -.059837 .289147
  • smoke5 -.0545062 .01235 -4.41 0.000
    -.078719 -.030294 .081395
  • --------------------------------------------------
    ----------------------------
  • () dy/dx is for discrete change of dummy
    variable from 0 to 1

26
Interpret the results
  • Males are 4.7 percentage points more likely to
    report excellent
  • Each year of age decreases chance of reporting
    excellent by 0.7 percentage points
  • Current smokers are 7.5 percentage points less
    likely to report excellent health

27
Minor notes about estimation
  • Wald tests/-2 log likelihood tests are done the
    exact same was as in PROBIT and LOGIT

28
  • Use PRCHANGE to calculate marginal effect for a
    specific person
  • prchange, x(age40 black0 othrace0 smoke0
    smoke50 educ16)
  • When a variable is NOT specified (famincl), STATA
    takes the sample mean.

29
  • PRCHANGE will produce results for all outcomes
  • male
  • AvgChg 1 2
    3 4
  • 0-gt1 .0203868 -.0020257 -.00886671
    -.02677558 -.01329902
  • 5
  • 0-gt1 .05096698

30
  • age
  • AvgChg 1 2
    3 4
  • Min-gtMax .13358317 .0184785 .06797072
    .17686112 .07064757
  • -1/2 .00321942 .00032518 .00141642
    .00424452 .00206241
  • -sd/2 .03728014 .00382077 .01648743
    .04910323 .0237889
  • MargEfct .00321947 .00032515 .00141639
    .00424462 .00206252
Write a Comment
User Comments (0)
About PowerShow.com