Title: Synchrotron Radiation Facilities
1Synchrotron Radiation Facilities
- Alessandro G. Ruggiero
- Brookhaven National Laboratory
- CINVESTAV, Mexico City, January, 24-26, 2007
2World Radiation Facilities
- There are 60 SR Facilities in the World listed at
- http//www.camd.lsu.edu/lightsourcefacilities.html
- SPring - 8 Hyogo, Japan
- Advanced Photon Source Argonne, IL, United
States - European Synchrotron Radiation Facility Grenoble,
France - National Synchrotron Light Source Brookhaven,
NY, United States
33rd-Generation Facilities and Brookhaven
Energy Circumfer. Linac/Booster Beam Current Emittance m-rad
SPring-8 8 GeV 1436 m
APS 7 GeV 1104 m / 40 450 MeV 0.822 x 10-8
ESRF 6 GeV 844 m / 16 200 MeV 0.2 Amp 0.695 x 10-8
NSLS-Xray 2.5 GeV 170 m / 8 120/750 MeV 0.5 Amp 0.102 x 10-6
NSLS-VUV 750 MeV 51 m / 4 120/750 MeV 1.0 Amp 0.138 x 10-6
Number of Periods
4Typical SR Facility
Undulator - Wiggler
e-Source
Insertion Devices
Bending Magnet
Energy, E Circumference, 2pR No. of Periods,
M Beam Current, I Bending Radius, ? Number of
Beam Lines
5a2 ??H (??)2 b2 ??V ?
?E/E ? p a?
?
?
?
a
Dipoles
Quadrupoles
6Lattice Design Period
Equations of Motion x radial and y vertical
displacement from reference orbit x, y are
angles that electron trajectory makes with
reference orbit. ? d / ds s ?
longitudinal coordinate x' KH(s) x
h(s) ? h(s) curvature 1 / ? ?
?E/E y' KV(s) x 0 KH,V(s)
focusing function G / B?
- Drift Length L
- 1 L 0 0 0 0
- 0 1 0 0 0 0
- 0 0 1 L 0 0
- 0 0 0 1 0 0
- 0 0 0 0 1 0
- 0 0 0 0 0 1
- Total Period Matrix M H or V
- cos? ?sin? ?sin?
- -?sin ? cos? ?sin?
-
- ?H Np?/2p
- Dipole Bending Angle ? Radius ?
- cos? sin? 0 0 0 ?(1- cos?)
- -?-1sin? cos? 0 0 0 sin?
- 0 0 1 ?? 0 0
- 0 0 0 1 0 0
- sin? ?(1- cos?) 0 0 1 ?(? - sin?)
- 0 0 0 0 0 1
- Quadrupole K (G/B?)1/2 Length L Strength
? LK - cos? K-1sin? 0 0 0 0
- -Ksin? cos? 0 0 0 0
- 0 0 cosh? K-1sinh? 0 0
- 0 0 Ksinh? cosh? 0 0
- 0 0 0 0 1 0
- 0 0 0 0 0 1
- For QF Invert 2x2 H with 2x2 V for QD
- x m11 m12 0 0
0 m16 x - x' m21 m22 0 0
0 m26 x' - y 0 0 m33 m34
0 0 y - y' 0 0 m43 m44
0 0 y' - s -m26 -m16 0 0
1 m56 s - ? 2 0 0 0 0
0 1 ? 1
? ? ? betatron ? ? dispersion ?H ?V
tunes ?c momentum compaction
factor
Magnet Errors Misallignment -- H-V
Coupling Chromaticity d ?H,V / d ? --
Sextupoles -- Non-linearities
7Lattice Functions
8Lattice Functions
9Radiation Integrals
- I1 ? ? ds / ? all integrals are over
Dipoles - I2 ? ds / ?2
- I3 ? ds / ?3
- I4 ? (1-2n) ? ds / ?3 n - (? / B) dB /
dx (Field Index) - I5 ? H ds / ?3 H
?2 (? ?' - ?' ? / 2) / ?
(horizontal) - Momentum Compaction ?c (E / C)
dC / dE I1 / C - Energy Loss per Turn U0 2re E4
I2 / 3 (mc2)3 - Damping Partition Factors JH 1
- I4 / I2 and JE 2 I4 / I2 - Energy Spread ?E2 (55/32v3) (h /
mc) (E/mc2)2 I3 / (2 I2 I4) - Emittance ?
(55/32v3) (h / mc) (E/mc2)2 I5 (I2 - I4) - F(?H, lattice) E2GeV
/ JH NDipoles - gt 7.84 mm-mrad
- Damping Times ?i ms Cm ?m /
13.2 Ji E3 GeV - E.D. Courant and H.S. Snyder, Theory of
Alternating Gradient Synchrotron, Annals of
Physics, 3, 1-48 (1958) - M. Sands, The Physics of Electron Storage Rings.
An Introduction, SLAC-121, Nov.ember 1970
10Synchrotron Radiation from a Dipole Magnet
- Critical Photon Energy ?c h ?c 3 h c
?3 / 2 ? - ?c keV 0.665 BT E2 GeV
- ?c Ao 18.64 / BT E2 GeV
- dN / d? (photons spectral and
angular distribution) - (3 ? ?6 / 4 p2) y2 (?2 ?-2)2 K2/32(?)
K1/32(?) ?2 / (?2 ?-2) (I / e) ?? / ? - ? / ? vertical / horizontal opening angle
- ? y (1 ?2 ?2)3/2 / 2
- y ?c / ? ? / ?c
- At ? 0 dN / d? 1.325 x 1016 E2GeV
IAmp y2 K2/32(y/2) ?? / ? - photons/sec/mrad?/mrad?
- Integrating over ? dN / d? 2.457 x 1016
EGeV IAmp y (?y8K5/3(x)dx) ?? / ? - photons/sec/mrad?
- dP/d? mW/mrad? 8.73 x 103 E4GeV
IAmp y2 (?y8K5/3(x)dx) ?? / ? ?m - Total Power PTkW U0keV IAmp 88.5
E4GeV IAmp / ?m - J. Schwinger, Phys. Rev. 97, 470 (1955)
11RF Acceleration
- Because of the energy loss U0 to Synchrotron
Radiation, the Beam is continuously - re-accelerated with a RF system of cavities at
the frequency fRF and peak voltage VRF - The revolution Frequency f0 c / C (? 1)
- The Harmonic Number h fRF / f0
- The Synchronous Phase ?s arcsin 1/q
- q eVRF / U0
- The RF acceptance ?RF 2 U0
(q2 - 1)1/2 - arccos (1/q) / p ?c h E1/2 - Synchrotron Tune ?s fs / f0 eVRF
?c h cos ?s / 2p E1/2 - rms Bunch Length ?L c ?c ?E / 2 p fs
12Beam Lifetime
- Gas Scattering (elastic)
- 1/?scat 4re2Z2p d c lt?Hgt ?Hmax / a2
lt?Vgt ?Vmax / b2 / 2 ?2 - Bremstrahlung
- 1/?brem (16/411)re2Z2 d c ln183
Z-1/3-ln ARF - 5/8 - Touschek
- 1/?T vp re2 c N C(?) / ?H' ?3 (Aacc)2
V V 8p3/2 ?H ?V ?L Aacc
lt Abet or ARF - C(?) -3 e-? / 2 ? ??8 e-u ln u du / 2
u (3 ? - ? ln ? 2) ??8 e-u du / u - ? (Aacc / ? ?H')2
- Quantum Lifetime
- ?q ?E e? / 2 ? ? ARF2 / 2
?E2
13Damping Time 75 ms
Lifetime 180 min Number
of RF Buckets 1560 Number of
Bunches 1280
14Helical Undulator
- Field Configuration (NU is the number of
periods) - B Bucos(kuz) x sin(kuz) y kU 2p /
?U - Radiated Wavelength Wiggler Parameter
- ?(?) ?U(1 K2 ?2?2) / 2 ?2
K eBU / mckU lt 1 - Spectral and Angular Distribution (? 0)
photons/sec/steradian - dN / d? 2? NU2 ?2 K2 (I/e) (sin x / x)2 (??
/?) / (1 K2)2 - Resonance and Width x pNU(? - ?r) / ?r
- ?r 2 c kU ?2 / (1 K2) ?? /?r 1 /
NU
15Planar Undulator (1)
- Field Configuration (NU is the number of
periods) - B Bucos(kuz) y kU 2p / ?U
- Radiated Wavelength Undulator Parameter
- ?n(?) ?U(1 K2/2 ?2?2) / 2n?2
K eBU / mckU lt 1 - Spectral and Angular Distribution (? 0)
photons/sec/steradian - dN / d? ? NU2 ?2 Fn(K) (I/e) (sin xn / xn)2
(?? /?) - Resonance and Width xn pNUn(? - ?n) / ?n
- ?n 2 nc kU ?2 / (1 K2/2) ??n /?n
1 / nNU
16Planar Undulator (2)
- Form Factor
- Fn(K) nK / (1 K2/2)2 J(n1)/2 (u) -
J(n-1)/2 (u) 2 - n 1, 3, 5, . u n K2/(4 2K2)
- Total Power Radiated
- PTW 7.26 E2GeV IAmp NU K2 / ?Ucm
17Planar Wiggler
- The Insertion is a Wiggler when K gtgt 1 (with
NW periods) - Critical Energy
- ?c(?) ?c0 1 - (?? / K)21/2
- ?c0keV 0.665 BT E2GeV
- K 0.934 BT ?wcm
- Flux 2 NW x equivalent arc source flux of same
?c - Total Power Radiated
- PTW 7.26 E2GeV IAmp NW K2 / ?Wcm
18Klystron
AC - to -RF Conversion Efficiency 50-60
19Free Electron Laser (1)
A Coherent Source of Tunable Radiation If e-Bunch
length gtgt ?c then Prad N If e-Bunch length
lt ?c then Prad N2
- The FEL has three components
- - e-beam with E and I -gt P E x I
- a fraction of the beam power is converted to
FEL power - - Undulator (Helical) with BU and ?U
- stimulates radiation at wavelength ?c ?c
?U(1 K2) / 2 ?2 - - Low-Level e.m. Field at ?c (beam noise,
external input, mirrors,.) - creates beam self-bunching at lengths
comparable to ?c - Electron Orbit in Undulator K eBU / mckU kU
2p / ?U - ? (K / ?) cos(kUz) x sin(kUz) y
?0 z - ?0 1 (1 K2) / ?21/2
20Free Electron Laser (2)
- Plane wave propagating along the Undulator axis
k 2p / ? - E E0 cos(kz - ?t ?) x sin(kz - ?t
?) y - Energy Transfer Ponderomotive Force Phase
- mc2 d? / dt ec E0 (K / ?) sin (? ?) ?
(k kU) z ?t ?0 - Synchronism Condition d? / dt 0
-gt ? ?c - Otherwise d? / dt k (?z / ?0 1) -gt
bunching ... - Synchronous Particle mc2 d?s / dt ec E0 (K
/ ?s) sin ?s - Other Particle mc2 d? / dt ec E0 (K / ?
) sin ?
21Free Electron Laser (3)
- Energy Difference ? mc2 (? ?s)
- Equations of Motion
- d? / dt eE0 c (K / ?) (sin ? sin ?s)
- d? / dt ckU ? / mc2 ?3
- Hamiltonian
- H eE0 c (K / ?) (cos ? ? sin ?s) ckU
?2 / 2mc2 ?3 - Bucket Height
- ?B 2e mc2 E0 K ?2 / kU
- Phase Oscillation Frequency
- ? eE0 K kU cos ?s / m ?4
22FEL Amplification
- Small-Signal Gain (Meadys Formula)
- (few ) Undulator Length lt Gain Length
- G 4 v2 p ?c K2 (I / IA) NW3 d(sinx / x)2 /
dx / W2 (1 K2)3/2 - 17 kA (Alfven current) x
p NW ?? /? radiation cross-section - High-Gain
- (single pass) Undulator Length gt Gain Length
FEL Volume Length - Stored Energy WFEL E02 VFEL / 4p
- Power Gain d WFEL / dt 0.633 kW E2GeV IA
BUT LUm
23FEL Performance Evaluation (Low Gain)
- Plane Undulator
- Length LU NU ?U
- Number of Periods NU
- Period Length ?U
- Field Strength BU
- Undulator Parameter K 0.934 BUT ?Ucm
- Radiated Wavelength ?c 0.13 x 106 ?U (1
K2/2) / E2GeV - Radiated Power PTkW 0.633 E2GeV IAmp
BU2T LUm - BU 1 T 10 T
- ?U 1 cm
- E 1 GeV 3 GeV
- I 1 Amp
- LU 1 m 15 m
- ?c 19 Ao
- PT 0.633 kW
- PBeam 1 GW
Eff 0.633 x104 EGeV BU2T LUm
0.3
24Which Accelerator?
Energy Peak Current Pulse Length Wavelength
Electrostatic 1-10 MeV 1-5 A 1-20 µs mm to 0.1 mm
Induction Linac 1-50 MeV 1-10 kA 10-100 ns cm to µm
Storage Ring 0.1-10 GeV 1-1000 A 30-1000 ps 1 µm to nm
RF Linac 0.01-25 GeV 100-5000 A 0.1-30 ps 100 µm to 0.1 nm
25Procedure
- -Talk to the Users Community
- -Determine Requirements
- Wavelength, ?c
- Flux dN / d?
- Number of Beam Lines
- -Chose Accelerator Type E, I, C, Lattice,
- -Plan in Phases
- SR from Bending Magnets alone
- Insertion Devices
- FEL
- -Cost and Schedule Estimate
26Performance
- ?c Ao 18.64 / BT E2 GeV
- dN / d? ph/Amp sec mrad? 0.1 BW 1.6 x
1013 EGeV at ? ?c - For instance with B 1.25 T -gt ?c Ao
15 / E2 GeV
Energy ?c dN / d?
400 MeV 94 Ao 0.64 x 1013
800 MeV 23 Ao 1.28 x 1013
1.5 GeV 6.7 Ao 2.4 x 1013
3.0 GeV 1.7 Ao 4.8 x 1013
27Circumference, Beam Current and RF Power
- U0 Energy Loss / Turn
- Isomagnetic Storage Ring
- Packing Factor Bending Radius ? / Average
Radius R 0.20 - rms Energy Spread ?E / E (Cq ?2 / JE
?)1/2 Cq 3.84 x 1013 m
? B 1.25 T C 2p R PRF I 0.5 A ?E ?E / E
400 MeV 1.07 m 34 m 1.06 kW 2.12 keV 21.5 ms 0.33 x 103
800 MeV 2.14 m 67 m 8.5 kW 17 keV 10.6 ms 0.47 x 103
1.5 GeV 4.00 m 125 m 56 kW 112 keV 5.6 ms 0.64 x 103
3.0 GeV 8.00 m 250 m 450 kW 900 keV 2.8 m 0.91 x 103
28Brightness and Beam Emittance
- Flux dN / d? photons / Amp sec sterorad
0.1 BW - Brightness dN / d?dS photons / Amp sec
sterorad mm2 0.1 BW - Beam Emittance ? ?H2 / ?L (JE / JH)
(?E / E)2 lt H gtMag - Lattice Choice (Horizontal Plane, Isomagnet
Storage Ring) - lt H gtMag ?Mag ?2 (?L ?' ?L' ? / 2 )2
ds / 2p ? ?L - ?c R / ?H
- To increase Brightness -gt reduce beam spot size
?H -gt reduce Emittance -gt choose
Low-Dispersion Lattice
29Facilities Comparison
?L, Horizantal 1 m 10 coupling
Emittance ? m-rad ?H Brilliance / Flux R ?c ?H lt H gtMag
ESRF 0.695 x 108 0.083 mm 1500 / mm2 175.7 m 0.282 x 103 36.2 1.37 mm
APS 0.822 x 108 0.091 mm 1200 / mm2 134.3 m 0.228 x 103 35.215 0.87 mm
NSLS Xray 0.102 x 106 0.32 mm 98 / mm2 27.1 m 0.654 x 102 9.144 19.4 mm
NSLS UV 0.138 x 106 0.37 mm 73 / mm2 8.12 m 0.235 x 101 3.123 61.1 mm
30Brightness -- Spring-8 APS
31Brightness -- ESRF
32Brightness -- NSLS
33Damping and Quantum Fluctuation
- ? emittance or energy spread
- d? / dt ? / ? DQ 0
- Equilibrium ?8 ? DQ
- It takes 3 or 4 Damping
- Times ? to reach
- Equilibrium.
- Usually
- ?initial gt ?8 gt ?source
? / ?8
?8
t / ?