Bs Lifetime and Gs Measurements at D - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Bs Lifetime and Gs Measurements at D

Description:

Derek Strom. Northwestern University. For the D Collaboration ... Precision lifetime measurements of Bs, ?b, Bc, Bo, B ... Derek Strom. DPF Honolulu, Hawaii ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 37
Provided by: NUH9
Category:

less

Transcript and Presenter's Notes

Title: Bs Lifetime and Gs Measurements at D


1
Bs Lifetime and ?Gs Measurements at DØ
  • Derek Strom
  • Northwestern University
  • For the DØ Collaboration
  • October 29 November 3
  • DPF Honolulu, Hawaii
  • http//www-d0.fnal.gov/dstrom/DPF06.pdf

2
Outline
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Bs Physics Program at DØ
  • The DØ Detector
  • Bs Lifetime Measurement
  • Measurement of Br(Bs ? Ds Ds) and ?Gs
  • Direct Measurement of ?Gs and dFs CPV phase
  • Summary

3
Bs Program _at_ DØ
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • DØ has a rich B physics program.
  • First double-sided bound on Bs mixing parameter,
    ?ms.
  • Precision lifetime measurements of Bs, ?b, Bc,
    Bo, B-.
  • Large boost at Tevatron is good for lifetime
    studies.
  • ?Gs measurement provides tests SM predictions.
  • dFs measurement tests for CPV and new physics.

4
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
DØ Detector
vs 1.96 TeV
CDF
DØ
5
DØ Detector
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Tracking (? (SMT), Layer0 (RunIIb Upgrade) Silicon
Detector, and Central Fiber Tracker (CFT)
inside a 2T magnetic field. Muon (? layer tracking and one layer scintillation
trigger counters. 1.8T toroid followed by two
similar tracking and trigger layers. Good muon
triggers produce high yield. ? Large B samples.
6
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
DØ Detector
87
1 fb-1
0.4 fb-1
Data used in these analyses Bs Lifetime
0.4 fb-1 ?Gs Br(Bs?DsDs) 1
fb-1 ?Gs Bs?J/? F 1 fb-1
7
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Bs Theory
Bs-Bs mixing
Schrodinger Equation
Two physical Bs eigenstates, BH and BL BH and BL
expected to have different masses and lifetimes.
8
Bs Lifetime
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Spectator model of heavy hadron decays predicts
    all hadrons with the same heavy flavor content
    have identical lifetimes.
  • Observed charmed hadron lifetimes suggest
    non-spectator effects are not negligible in such
    decays.
  • Heavy Quark Expansion (HQE) theory accounts for
    non-spectator effects in decays and predicts
    lifetime differences among different b hadrons.
  • B-meson lifetime measurements tests the
    predictions of HQE theory.

Spectator quark not negligible in b hadron
lifetimes. Hierarchy of B lifetimes Test HQE
prediction
u, s
b
9
Channel
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Bs identified through the semileptonic decay
    channel
  • Bs ? Ds µ ? X
  • Ds ? F p
  • F ? K K
  • Events selected with inclusive single-muon
    triggers.
  • 3 level trigger system

?
µ
p-
Bs0
K-
Ds-
F
X
K
10
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Selection
  • pT(µ) 2.0 GeV
  • p(µ) 3.0 GeV
  • pT(K) 1.0 GeV
  • pT(p) 0.7 GeV
  • pT(Ds) 3.5 GeV
  • pT(µ w.r.t Ds) 2.0 GeV
  • 1.008
  • 1.6
  • 3.4
  • Muon penetrates toroid
  • All tracks within same jet
  • ?2 prob (Ds) 0.1
  • ?2 prob (Bs) 0.01
  • Helicity(Ds) 0.4
  • Tracks with nSMT and nCFT 1
  • No lifetime cuts!
  • Ds decay vertex displaced from
  • primary vertex in direction of P(Ds)

K
Helicity angle f
Ds
F rest frame
11
Reconstruction
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Ds ? F p
  • Tracks with pT 1.0 GeV assigned M(K)
  • Oppositely charged pairs combined to form a F
    candidate.
  • 1.008
  • F Combined with a track with pT 0.7 GeV
  • Opposite charge from muon gives right sign
    combination.
  • Track assigned M(p)
  • Three tracks (KKp) used to form the Ds vertex.
  • Additional track requirements
  • At least one hit in SMT and CFT.
  • pT (Ds) 3.5 GeV
  • Bs ? Ds µ X
  • Bs decay vertex found by intersecting the µ track
    with the flight direction of the Ds candidate.
  • Required to be displaced from the primary vertex
    in the direction of the Ds momentum.
  • 3.4
  • Bs not fully reconstructed because neutrino is
    not detected.

12
Analysis
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Bs lifetime, t, is related to the decay length,
    Lxy, in the transverse plane.
  • ct m Lxy / pT
  • Missing neutrino prevents a full reconstruction
    of the Bs.
  • Correction factor K introduced to estimate pT(Bs)
  • K pT(Ds µ) / pT(Bs) Determined with MC
  • Pseudo-proper decay length (PPDL), ? ,used to
    determine the Bs lifetime.
  • ? Lxy m / pT(Ds µ) ct / K

t lifetime pT transverse momentum of Bs m
invariant Bs mass
13
Bs Lifetime
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Signal
Signal Gaussian fit to right-sign Dsµ
candidates. Background second-order polynomial
fit. D?Fp(Cabbibo suppressed) Gaussian fit.
Reconstructed Ds candidates 400 pb-1 5176 242
(stat) 314 (syst) M(Ds) 1958.8 0.9 MeV
DØ RunII Preliminary
wrong sign
14
Background
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Prompt
  • µ produced at primary vertex reconstructed Ds
  • Physics Background
  • µ Ds where neither come from semileptonic decay
    of Bs
  • Included in signal sample
  • Prompt Ds from cc production µ
  • Short lifetimes
  • Can bias lifetime measurement
  • Non-Bs Background
  • B ? µ Ds
  • Long lifetimes
  • Smaller effects
  • Softer pT(µ) from decay of secondary c-hadron
  • Reduced by kinematic cuts
  • Background contribution of each process evaluated
    with MC.

B0 ? Ds- D X B- ? Ds- D0 X Bs ? Ds- D X
15
Bs Lifetime
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Background
1913.6 2004.0 MeV
1755.3 1800.5 MeV
2117.1 2162.3 MeV
  • Combinatorial background events contained in the
    signal sample parameterized using right-sign
    events from sidebands and wrong-sign events
  • signal
  • right-sign events from sidebands
  • wrong-sign events

DØ RunII Preliminary
16
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Fit
  • PPDL distribution from signal region fitted with
    an unbinned maximum log-likelihood method.
  • Both Bs lifetime and background shape determined
    in a simultaneous fit to the signal and
    background samples.

NS Number of events in signal sample NB
Number of events in background sample fsig
ratio of Ds signal events from mass distribution
to total number of events in the signal
sample Fsig signal probability distribution
function (normalized exponential decay, K
factor, and a gaussian resolution function. Fbkg
combinatorial background sample
17
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Results
  • t(Bs) 1.398 0.044 (stat) -0.0250.028 (syst)
    ps
  • Most precise result to date!
  • WAPDG t(Bs) 1.461 0.057 ps
  • t(B0) 1.536 0.014 (stat) ps
  • Bs lifetime is different from the B0 lifetime by
    more than 1, consistent with HQE.

DØ RunII Preliminary
Comparison to other results.
hep-ex/0604046
18
?Gs Br(Bs?DsDs)
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
?Gs GL GH BL BsEVEN
BH BsODD ?GCP G(BsEVEN) G(BSODD)
  • How to measure ?Gs?
  • Directly from Bs?J/? F decays
  • Disentangle CP even and odd final states.
  • Estimate from Br(Bs?DsDs)
  • CP even dominated final state
  • Gives largest contribution in the lifetime
    difference.
  • Theory suggest
  • 2 Br(Bs?DsDs) ?GCP/ G (1 O(?G/G))
  • Relate measurement to CPV phase, Fs
  • ?GCP ?G/cosFs
  • Fs is related to CP violation in Bs mixing and is
    expected to be small in the SM.

19
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Channel
  • Bs identified through decay to two Ds
  • Bs0 ? Ds Ds
  • Ds ? µ ? F, F ? K K- (semileptonic)
  • Ds ? F p-, F ? K K- (hadronic)
  • Define 2 Samples
  • (µDs) events containing µ Ds ? F p
  • Produced mainly by Bs ? µ ? Ds
  • Small sample of cc ? µ ? Ds
  • (µFDs) (µDs) F

µ
?
K-
Ds
F
K
Bs0
p-
K-
Ds-
F
K
20
Analysis
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Estimate the following
  • N(µDs) number of signal events in (µDs) sample
  • N(µFDs) number of signal events in (µFDs)
    sample
  • (Bs ? µ?Ds) fraction of Bs ? µ?Ds decays in
    (µDs) sample
  • Nbkg (µFDs) Number of background events in
    (µFDs) sample
  • (Bs ? µ?Ds) and Nbkg (µFDs) determine by
    subtracting contributions from all other sources
    from each sample
  • Measure R (detector uncertainties cancel) and
    extract the branching ratio.
  • R N(µFDs) - Nbkg(µFDs) / N(µDs) (Bs? µ?Ds)
  • R Br(Bs ? Ds Ds) Br(Ds ? µ?F) / Br(Bs ?
    µ?Ds)
  • Compute Br(Bs ? Ds Ds) using
  • Measured value of R
  • PDG value for Br(Ds ? µ?F)
  • PDG value for Br(Bs ? µ?Ds)
  • BaBar measurement of Br(Ds ? Fp) combined
    average with PDG

21
Selection
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Number of muon hits 2
  • All tracks
  • nSMT hits 2
  • nCFT hits 2
  • PT(µ) 2 GeV
  • P(µ) 3 GeV
  • PT(p) 1.0 GeV
  • Opposite charge from µ
  • PT(K) 0.8 GeV
  • Opposite charge combinations
  • F(Ds? Fp) 1.01
  • F(Ds? Fµ) 0.998
  • Ds? Fp
  • 1.7
  • ?2 (vertex)
  • cos(?) 0.35, Helicity between Ds and K
  • Ds? Fµ?
  • 1.2
  • ?2 (vertex)
  • Bs? µDs
  • m(µDs)
  • ?2 (B vertex)
  • L(µDs) 150 µm
  • Ds? µFDs
  • 4.3
  • ?2 (vertex)
  • L(µFDs) 150 µm

22
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
N(µDs) Sample
  • Number of (µDs) events estimated from a binned
    fit to M(Fp) distribution.
  • Gaussian fit to both D and Ds decays
  • Second-order polynomial fit to background
  • N (µDs) 15225 310

23
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
N(µFDs) Sample
  • Number of (µFDs) events estimated from an
    unbinned Log-Likelihood fit.
  • Used all events in range
  • 1.7
  • 0.998
  • Single Gaussian used to describe the Ds signal
  • Double Gaussian used to describe the F peak.
  • N (µFDs) 19.34 7.85

24
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Sample Composition

Fraction of events in (µDs) sample coming from
Bs?µ?DsX
(Bs ? µ?Ds) 0.79 0.05
25
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Background Composition

Nbkg (µFDs) 1.7 1.2
26
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
Results
  • Br(Bs ? DsDs) 0.071 0.032 (stat) -0.025
    0.029 (syst)
  • ?GCP/ G 0.142 0.064 (stat) -0.050 0.058
    (syst)
  • This estimate is in good agreement with the SM
    predictions
  • ?GCP/ GSM 0.12 0.06

DØ Conference Note 5068
27
?Gs Bs?J/? F
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • To a good approximation, mass eigenstates in Bs
    system are expected to be CP eigenstates.
  • New phenomena may introduce a non-vanishing
    mixing phase dFs, leading to a reduction in the
    observed ?G compared to SM predictions ?GSM
  • ?G ?GSM cos(dFs)
  • Bs ? J/? F gives rise to a mixture of CP-even and
    CP-odd final states.
  • Possible to separate the two CP components of the
    decay and measure the lifetime differences.
  • Simultaneous fit to the mass, proper decay
    length, and three angles of the decay products
    J/? and F.

28
Selection
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Bs ? J/? F
  • J/? ? µµ
  • F ? KK
  • 2 Reconstructed µs
  • Number muon hits 1
  • PT(µ) 1.5 GeV
  • PT(K) 0.7 GeV
  • PT(F) 1.5 GeV
  • PT(Bs) 6.0 GeV

2.9 GeV 5.0
vertex s(ct)
candidates
29
3 Angle Analysis
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • The CP content Bs?J/? F can be analyzed by
    studying the 3 angular distributions (f, ?, ?) of
    the decay products.

y
µ
z
K
?
y
?
x
f
F
J/?
F rest frame
K-
K
F
µ-
KK defines xy plane K defines y direction Polar
and azimuthal angles of µ, ? and f Helicity
angle ?
J/? rest frame
K-
x
30
Background
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Background is divided into two categories
  • Prompt directly produced J/? mesons formed
    together with random tracks.
  • Fitted with a gaussian function
  • Non-prompt J/? product of B decay and F
    tracks come from same B hadron
  • Fitted with two exponentials negative and
    positive ct regions.

31
Fit
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
  • Simultaneous unbinned maximum likelihood fit to
    the proper decay length, three angles, and the Bs
    mass.
  • N total number of events
  • fsig signal fraction
  • Fsig function of the signal mass, proper decay
    length, and the decay angles (f, ?, ?) .
  • Fbkg product of the background mass, proper
    decay length, and angular density functions.

DØ RunII Preliminary
32
Angular Fit Results
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
DØ RunII Preliminary
DØ RunII Preliminary
DØ RunII Preliminary
33
Results
Introduction Bs Lifetime ?Gs Br(Bs?DsDs) ?Gs
Bs?J/?F
DØ RunII Preliminary
DØ RunII Preliminary
No CP violation hypothesis (dF 0) t(Bs) 1.52
0.08 (stat) -0.03 0.01 (syst) ps ?G 0.12
0.08 0.03 ps-1 CPV (dF allowed to vary) t(Bs)
1.49 0.08 (stat) -0.03 0.01 (syst) ps ?G
0.17 0.09 0.03 ps-1 dF -0.79 0.56 0.01,
dFSM -0.03
DØ Conference Note 5144
34
Summary
  • DØ continues to produce interesting and
    competitive results in B physics
  • Most precise results to date on Bs lifetime!
  • t(Bs) 1.398 0.044 (stat) -0.025 0.028 (syst)
    ps
  • Stringent test of HQE theory
  • Tests of Standard Model
  • Br(Bs?DsDs) 0.071 0.032 (stat) -0.025
    0.029 (syst)
  • ?GCP/ G 0.142 0.064 (stat) -0.050 0.058
    (syst)
  • Bs ? J/? F
  • t(Bs) 1.49 0.08 (stat) -0.03 0.01 (syst)
    ps
  • ?G 0.17 0.09 0.03 ps-1

35
Backup Slides
36
?Gs Fit
  • The time evolution of the three-angle
    distribution of the products of the decay of
    untagged Bs mesons, expressed in terms of the
    linear polarization amplitudes Ax(t)
Write a Comment
User Comments (0)
About PowerShow.com