Cardiovascular System - PowerPoint PPT Presentation

1 / 64
About This Presentation
Title:

Cardiovascular System

Description:

Heart Anatomy. Approximately the size of your fist ... Allows for the heart to work in a relatively friction-free environment. Pericardium & Heart Wall ... – PowerPoint PPT presentation

Number of Views:146
Avg rating:3.0/5.0
Slides: 65
Provided by: kar98
Category:

less

Transcript and Presenter's Notes

Title: Cardiovascular System


1
Cardiovascular System
  • Heart Anatomy
  • Coverings
  • Muscles
  • BVs
  • Valves
  • Cardiac Physiology
  • Electro-chemical events
  • Contractility
  • Energetics

2
Heart Anatomy
  • Approximately the size of your fist
  • Location
  • Superior surface of diaphragm
  • Left of the midline
  • Anterior to the vertebral column, posterior to
    the sternum

3
(No Transcript)
4
Coverings of the Heart Anatomy
  • Pericardium a double-walled sac around the
    heart composed of
  • A superficial fibrous pericardium
  • A deep two-layer serous pericardium
  • The parietal layer lines the internal surface of
    the fibrous pericardium
  • The visceral layer or epicardium lines the
    surface of the heart
  • They are separated by the fluid-filled
    pericardial cavity

5
Coverings of the Heart Physiological
Significance
  • The pericardium
  • Protects and anchors the heart
  • Prevents overfilling of the heart with blood
  • Allows for the heart to work in a relatively
    friction-free environment

6
Pericardium Heart Wall
7
Heart Wall
  • Epicardium visceral layer of the serous
    pericardium
  • Myocardium cardiac muscle layer forming the
    bulk of the heart
  • Fibrous skeleton of the heart crisscrossing,
    interlacing layer of connective tissue
  • Endocardium endothelial layer of the inner
    myocardial surface

8
(No Transcript)
9
External Heart Major Vessels of the Heart
(Anterior View)
  • Vessels returning blood to the heart include
  • Superior and inferior venae cavae
  • Right and left pulmonary veins
  • Vessels conveying blood away from the heart
  • Pulmonary trunk, which splits into right and left
    pulmonary arteries
  • Ascending aorta (three branches)
    brachiocephalic, left common carotid, and
    subclavian arteries

10
External Heart Vessels that Supply/Drain the
Heart (Anterior View)
  • Arteries right and left coronary (in
    atrioventricular groove), marginal, circumflex,
    and anterior interventricular arteries
  • Veins small cardiac, anterior cardiac, and
    great cardiac veins

11
(No Transcript)
12
(No Transcript)
13
External Heart Major Vessels of the Heart
(Posterior View)
  • Vessels returning blood to the heart include
  • Right and left pulmonary veins
  • Superior and inferior venae cavae
  • Vessels conveying blood away from the heart
    include
  • Aorta
  • Right and left pulmonary arteries

14
External Heart Vessels that Supply/Drain the
Heart (Posterior View)
  • Arteries right coronary artery (in
    atrioventricular groove) and the posterior
    interventricular artery (in interventricular
    groove)
  • Veins great cardiac vein, posterior vein to
    left ventricle, coronary sinus, and middle
    cardiac vein

15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
Atria of the Heart
  • Atria are the receiving chambers of the heart
  • Each atrium has a protruding auricle
  • Pectinate muscles mark atrial walls
  • Blood enters right atria from superior and
    inferior venae cavae and coronary sinus
  • Blood enters left atria from pulmonary veins

19
Ventricles of the Heart
  • Ventricles are the discharging chambers of the
    heart
  • Papillary muscles and trabeculae carneae muscles
    mark ventricular walls
  • Right ventricle pumps blood into the pulmonary
    trunk
  • Left ventricle pumps blood into the aorta

20
(No Transcript)
21
(No Transcript)
22
Pathway of Blood Through the Heart and Lungs
  • Right atrium ? tricuspid valve ? right ventricle
  • Right ventricle ? pulmonary semilunar valve ?
    pulmonary arteries ? lungs
  • Lungs ? pulmonary veins ? left atrium
  • Left atrium ? bicuspid valve ? left ventricle
  • Left ventricle ? aortic semilunar valve ? aorta
  • Aorta ? systemic circulation

23
(No Transcript)
24
Coronary Circulation
  • Coronary circulation is the functional blood
    supply to the heart muscle itself
  • Collateral routes ensure blood delivery to heart
    even if major vessels are occluded

25
Coronary Circulation Arterial Supply
Figure 18.7a
26
Coronary Circulation Venous Supply
Figure 18.7b
27
Heart Valves
  • Heart valves ensure unidirectional blood flow
    through the heart
  • Atrioventricular (AV) valves lie between the
    atria and the ventricles
  • AV valves prevent backflow into the atria when
    ventricles contract
  • Chordae tendineae anchor AV valves to papillary
    muscles

28
Heart Valves
  • Aortic semilunar valve lies between the left
    ventricle and the aorta
  • Pulmonary semilunar valve lies between the right
    ventricle and pulmonary trunk
  • Semilunar valves prevent backflow of blood into
    the ventricles

29
4 Heart Valves (2 AV 2SL)
30
(No Transcript)
31
Atrioventricular Valve Function
Figure 18.9
32
Semilunar Valve Function
Figure 18.10
33
Microscopic Anatomy of Heart Muscle
  • Cardiac muscle is striated, short, fat, branched,
    and interconnected
  • The connective tissue endomysium acts as both
    tendon and insertion
  • Intercalated discs anchor cardiac cells together
    and allow free passage of ions
  • Heart muscle behaves as a functional syncytium

PLAY
InterActive Physiology Anatomy Review The
Heart, pages 37
34
(No Transcript)
35
Mechanisms of Contraction (skeletal muscle
differences)
  • Means of stimulation automaticity or
    autorhythmicity 1 of heart m. cells are
    dedicated to this spontaneous depolarization
  • Heart contracts as a unit due to gap junction ion
    transmission in cell to cell propogation
  • Absolute refractory period (250ms vs 1-2ms for
    skeletal) inactive period when muscle cant
    contract - prevents tetanic contractions

36
Contractile Heart Muscle Fibers (similarity to
skeletal muscle)
  • Na influx opens voltage-regulated fast Na
    channels for short incr. in Na permeability
  • Depolarization wave passes down T-tubules to
    release Ca from SR into sarcoplasm
  • Excitation-contraction coupling occurs as Ca
    binds to the troponin to allow cross-bridges
  • Slow Ca channels prolong the contraction phase
    for up to 200ms - plateau

37
(No Transcript)
38
Heart Physiology
  • Energy Requirements
  • Incr. mitochondria
  • Almost exclusively aerobic
  • Fuels
  • Glucose, fatty acids, lactic acid, ketone
    bodies
  • Setting Rhythm
  • Gap Junctions
  • Intrinsic Conduction System

39
AP of Autorhythmic Cells
  • Unstable resting membrane potential continuous
    depolarization towards threshold
  • Pacemaker potentials or prepotentials
  • Due to gradual reduction in K w/ unchanged Na
    permeability allowing slow influx of Na, results
    in less (more ) membrane potential
  • At threshold (-40mV) fast Ca channels open with
    a burst thus Ca controls AP

40
(No Transcript)
41
Intrinsic System Electrical Sequence
  • SA Node superior region of R.Atria
  • - 75X/min thus all other centers Pacemaker
  • AV Node interatrial septum above Tricuspid
    -0.1s delay allows atrial contraction before
    ventricles due to narrowed fibers.
  • AV Bundle (Bundle of His) - crosses the
    disconnect between atria and ventricles)
    superior interventricular septum
  • R L Bundle Branches split go to the apex
  • Purkinje Fibers complete the pathway to the
    ventricular walls (papillary m. first, then to
    the ventricles)

42
(No Transcript)
43
Heart Excitation Related to ECG
SA node generates impulse atrial excitation
begins
Impulse delayed at AV node
Impulse passes to heart apex ventricular excitati
on begins
Ventricular excitation complete
SA node
AV node
Purkinje fibers
Bundle branches
Figure 18.17
44
Extrinsic Innervation
  • Autonomic N.S.
  • Sympathetic Cardioacceleratory center in
    medulla go to SA node, AV node, heart muscle,
    and coronary arteries to create excitation and
    increased heart rate
  • Parasympathetic Cardioinhibitory center uses
    Cranial n. X (Vagus n.) to SA and AV nodes

45
(No Transcript)
46
Electrocardiography (ECG or EKG)
  • In NOT one AP, rather it is a composite of ALL
    the APs generated by nodal and contractile cells
  • 12 leads (3 bipolar and 9 unipolar)
  • P wave atrial depolarization lasts 0.08s
    (0.1s to atrial contraction)
  • QRS complex ventricular depolarization size
    dependant lasts 0.08s
  • T wave ventricular repolarization lasts 0.16s

47
(No Transcript)
48
Heart Excitation Related to ECG
SA node generates impulse atrial excitation
begins
Impulse delayed at AV node
Impulse passes to heart apex ventricular excitati
on begins
Ventricular excitation complete
SA node
AV node
Purkinje fibers
Bundle branches
Figure 18.17
49
Electronic Intervals
  • P-Q interval N 0.16s
  • P-R interval another descriptor instead of P-Q
  • S-T segment AP is in plateau and all the
    ventricular myocardium is depolarized
  • Q-T interval N 0.38s time of ventricular
    depolarization through repolarization.

50
ECG Interpretations
  • Enlarged R may be enlarged ventricles
  • Flattened T may mean cardiac ischemia
  • Prolonged Q-T interval may be ventricular
    arrhythmias
  • Absent or flattened P may be atrial fibrillation
  • No QRS with every P is heart block (normally
    11 whole number ratio)
  • Chaotic deflections is V-fib seen with heart
    attack or electrical shock

51
ECG Tracings
  • Normal Sinus Rhythm
  • Junctional Rhythm no SA node activity no
    atrial contraction
  • 2nd degree heart block
  • V-fib

52
(No Transcript)
53
Mechanical Events of the Cardiac Cycle
  • Ventricular Filling mid to late diastole P
    wave and atrial contraction phase create the End
    Diastolic Volume
  • Ventricular Systole isovolumetric contraction
    phase followed by ventricular ejection phase
  • Isovolumetric relaxation early diastole after T
    wave to create the End Systolic Volume (also see
    the dicrotic notch
  • Total time 0.8s (0.1 atria 0.3 ventricles 0.4
    relax)

54
(No Transcript)
55
Cardiac Output (CO)
  • CO HR(75) X SV(70) 5.25L / min
  • Preload Degree of Stretch of Heart Muscle fibers
    (Frank-Starling Law) affect EDV
  • Contractility enhanced by Ca concentrations )
    plus hormones glucagon, thyroxine, and
    epinephrine and digitalis ( inotropic vs.
    inotropic) that affect ESV
  • Afterload Back Pressure Exerted by Arterial
    Blood N80mmHg causes less blood to be ejected if
    80 so ESV is affected

56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
59
(No Transcript)
60
Developmental Aspects of the Heart
  • Fetal heart structures that bypass pulmonary
    circulation
  • Foramen ovale connects the two atria
  • Ductus arteriosus connects pulmonary trunk and
    the aorta

61
(No Transcript)
62
Age-Related Changes Affecting the Heart
  • Sclerosis and thickening of valve flaps
  • Decline in cardiac reserve
  • Fibrosis of cardiac muscle
  • Atherosclerosis

63
Congestive Heart Failure (CHF)
  • Congestive heart failure (CHF) is caused by
  • Coronary atherosclerosis
  • Persistent high blood pressure
  • Multiple myocardial infarcts
  • Dilated cardiomyopathy (DCM)

64
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com