Title: Image Fusion for
1- Image Fusion for
- Context Enhancement
- and Video Surrealism
Adrian Ilie UNC Chapel Hill
Ramesh Raskar Mitsubishi Electric Research
Labs, (MERL)
Jingyi Yu MIT
2(No Transcript)
3Dark Bldgs
Reflections on bldgs
Unknown shapes
4Well-lit Bldgs
Reflections in bldgs windows
Tree, Street shapes
5Night Image
Background is captured from day-time scene using
the same fixed camera
Context Enhanced Image
Day Image
6Mask is automatically computed from scene
contrast
7But, Simple Pixel Blending Creates Ugly
Artifacts
8Pixel Blending
9Pixel Blending
Our MethodIntegration of blended Gradients
10Outline
- Context Enhancement
- Gradient-based Fusion
- Video Enhancement
- Surrealism
11Gradient field
Nighttime image
x
Y
G1
G1
I1
Mixed gradient field
x
Y
G
G
Importance image W
I2
x
Y
G2
G2
Final result
Daytime image
Gradient field
12Reconstruction from Gradient Field
- Problem minimize error Ñ I G
- Estimate I so that
-
- G Ñ I
- Poisson equation
- Ñ 2 I div G
- Full multigrid
- solver
GX
I
GY
13Why Gradient-based Approach
- Comparison of intensity values are important
- Maintain gradients to capture local variations
- Directly solve for desired gradients
- Maintain subtle details
- Mix dissimilar images
- No need for precise segmentation
14Comparison
- Average
- Subtle details are lost
- Pixel-wise blending
- Sharp transitions
15Issues
- Boundary conditions
- Color shifts
16Boundary Conditions
- Assumed Neumann condition at borders,
- Ñ I N 0,
- Enforced by haloing image with blacks
17Color Shift
- Mixing dissimilar images
- Goal final image appearance matches input images
at corresponding pixels - Ifinal(x,y) c1 Ipoisson(x,y) c2
- Solve
- ?Wi(x,y) Ioriginal(x,y) c1 Ipoisson(x,y) c2
- Each color channel reconstructed separately
18(No Transcript)
19Outline
- Context Enhancement
- Gradient-based Fusion
- Video Enhancement
- Surrealism
20(No Transcript)
21(No Transcript)
22Overview of Process
Day time image By averaging 5 seconds of day
video
Original night time traffic camera 320x240 video
Input
Output
Enhanced video Note exit ramp, lane dividers,
buildings not visible in original night video,
but clearly seen here.
Mask frame (for frame above) Encodes pixel with
intensity change
23Algorithm
Frame N
Gradient field
Mixed gradient field
TimeAveraged importance mask
Processed binary mask
Final result
Gradient field
Daytime image
Frame N-1
24Outline
- Context Enhancement
- Gradient-based Fusion
- Video Enhancement
- Related Work
- Surrealism
25Related Work
- Spatio-temporal Composition
- Duchamp (Nude descending a staircase)
- Freeman 2002
- Fels 1999, Klein 2002, Cohen 2003
- Gradient-based Techniques
- Multi-spectral Socolinsky 1999
- Shadow removal Weiss 2001
- High dynamic range Fattal 2002
- Image editing Perez 2003
- Some at Siggraph04
26Surrealism
Rene Magritte, Empire of the Light
27Outline
- Context Enhancement
- Gradient-based Fusion
- Video Enhancement
- Surrealism
28Time-lapse Mosaics
Maggrite Stripes
time
29Time Lapse Mosaic
30Time Lapse Mosaic
31t
32Sunrise at Night
33BiSolar System
34Discussion
- User Experience
- More effective in conveying scene context
- Dreamy appearance
- Nonrealistic False conditions
- Applications
- Tools for artists
- Surveillance
- Amusement park rides
- Performance
- 1 sec/frame for 320x240
- 3 min for 4Mpixel image
35Image Fusion for Context Enhancement
- Nonrealistic but comprehensible context
- Fusion using multiple images
- Enhancing night images with day bgrnd
- Gradient-based fusion
- Video surrealism tools
t