Nell Dale - PowerPoint PPT Presentation

1 / 61
About This Presentation
Title:

Nell Dale

Description:

2. ADT Sorted List Operations. Transformers. MakeEmpty. InsertItem. DeleteItem. Observers ... 2. 1. newNode. 21. Deleting from a Circular List. DeleteItem ... – PowerPoint PPT presentation

Number of Views:226
Avg rating:3.0/5.0
Slides: 62
Provided by: sylv147
Category:

less

Transcript and Presenter's Notes

Title: Nell Dale


1
C Plus Data Structures
Nell Dale David Teague Chapter 6 Lists
Plus Slides by Sylvia Sorkin, Community College
of Baltimore County - Essex Campus
2
ADT Sorted List Operations
  • Transformers
  • MakeEmpty
  • InsertItem
  • DeleteItem
  • Observers
  • IsFull
  • LengthIs
  • RetrieveItem
  • Iterators
  • ResetList
  • GetNextItem

change state observe state process all
3

class SortedTypeltchargt
SortedType
Private data length
3 listData currentPos
MakeEmpty
SortedType
RetrieveItem
InsertItem
DeleteItem . . .
GetNextItem
4
What is a Circular Linked List?
  • A circular linked list is a list in which every
    node has a successor the last element is
    succeeded by the first element.

B C L
listData
5
Fig 6.1 A circular linked list
listData
C
A
D
B
6
Fig 6.2 A circular linked list with the
external pointer pointing to the rear element
listData
(a)
C
A
D
B
(b)
listData
A
(c)
listData
(empty list)
7
Finding a List Item
  • RetrieveItem, InsertItem, and DeleteItem all
    require a search.Lets write a general FindItem
    routine that takes item as a parameter and
    returns location, predLoc, and found.InsertItem
    and DeleteItem need the location of the
    predecessor node(predloc)
  • In the linear list, we initialized location to
    point to the first node in the list and set
    predLoc to NULL(fig 6.3a)
  • For the circular list search, we initialized
    location to point to the first node and set
    predLoc to point to its predecessor last node
    in the list(fig 6.3b)

8
Fig 6.3 Initializing for FindItem
(a) For a linear linked list
listData
C
A
B
location listData predLoc NULL
location
predLoc
(b) For a circular linked list
C
A
B
location listData-gt next predLoc listData
predLoc
location
listdata
9
Finding a List Item
  • FindElement- Algorithm
  • Set location to Next(listData)
  • Set predloc to listData
  • Set found to false
  • Set moreToSearch to true
  • while moreToSearch to true AND NOT Found DO
  • if(item lt Info(location)
  • Set moreToSearch to false
  • else if (item Info(location)
  • Set found to true
  • else
  • Set predLoc to location
  • Set location to Next(location)
  • Set moreToSearch to (location ! Next(listData)

10
Fig 6.4 The FindItem operation for a circular
list
(a) The general case (Find B)
listData
predLoc
location
C
A
D
B
11
Fig 6.4 The FindItem operation for a circular
list
(b) Searching for the smallest item (Find A)
listData
location
predLoc
C
A
D
B
12
Fig 6.4 The FindItem operation for a circular
list
(c) Searching for the item that isnt there (Find
C)
predLoc
listData
location
J
A
K
B
13
Fig 6.4 The FindItem operation for a circular
list
(d) Searching for the item bigger than any in the
list (Find E)
listData
predLoc
location
C
A
D
B
14
Inserting into a Circular List
  • InsertItem Algorithm
  • Set newNode to address of newly allocated node
  • Set Info(newNode) to item
  • Find the place where the new element belongs
  • Put new element into the list

15
Inserting into a Circular List
  • The task of allocating space as for the linear
    list.we allocate space for the node using the new
    operator and then store item into newNode-gtinfo
  • The next task is equally simple,just call
  • FindItem(listdata, item, location, predLoc,
    found)

16
Inserting into a Circular List
  • We dont find the element because it isnt there
    it is predLoc pointer that interests us. The new
    node is linked into the list immediately after
    Node(predLoc).
  • To put the new element into the list we store
  • predLoc-gtnext into newNode-gtnext and
  • newNode into predLoc-gtnext.

17
Fig 6.5 Inserting into a circular linked list
(a) General case (Insert C)
newNode
B
listData
predLoc
1
2
D
A
E
B
18
Fig 6.5 Inserting into a circular linked list
(b) Special case the empty list (Insert A)
listData
newNode
A
19
Fig 6.5 Inserting intoa circular linked list
(c) Special case ( ?) inserting to front of list
(Insert A)
newNode
A
listData
predLoc
1
2
C
D
B
20
Fig 6.5 Inserting into a circular linked list
(d) Special caseinserting to end of list (Insert
E)
listData
newNode
predLoc
D
A
E
B
2
1
21
Deleting from a Circular List
  • DeleteItem - Algorithm
  • Find the element in the list
  • Remove the element from the list
  • Deallocate the node

22
Fig 6.6 Deleting from a circular linked list
predLoc-gt next location-gt next
predLoc
listData
location
C
A
B
(a)General case (Delete B)
23
Fig 6.6 Deleting from a circular linked list
predLoc-gt next location-gt next
location
listData
predLoc
C
A
B
(b)Special case(?) deleting the only item
(DeleteA)
24
Fig 6.6 Deleting from a circular linked list
predLoc-gt next location-gt next (the general
case PLUS) listData predLoc
listData
location
predLoc
C
A
B
(d) Special casedeleting the largest item
(Delete C)
25
What is a Doubly Linked List?
  • A doubly linked list is a list in which each node
    is linked to both its successor and its
    predecessor.

A C F
T Z
listData
26
Each node contains two pointers
templatelt class ItemType gt struct NodeType
ItemType info // Data member
NodeTypeltItemTypegt back // Pointer to
predecessor NodeTypeltItemTypegt next //
Pointer to successor
3000 A NULL
. back . info . next
27
What are Header and Trailer Nodes?
  • A Header Node is a node at the beginning of a
    list that contains a key value smaller than any
    possible key.
  • A Trailer Node is a node at the end of a list
    that contains a key larger than any possible key.
  • Both header and trailer are placeholding nodes
    used to simplify list processing.

INT_MIN 5 8
13 INT_MAX
listData
28
Recall Definition of Stack
  • Logical (or ADT) level A stack is an ordered
    group of homogeneous items (elements), in which
    the removal and addition of stack items can take
    place only at the top of the stack.
  • A stack is a LIFO last in, first out structure.

29
Stack ADT Operations
  • MakeEmpty -- Sets stack to an empty state.
  • IsEmpty -- Determines whether the stack is
    currently empty.
  • IsFull -- Determines whether the stack is
    currently full.
  • Push (ItemType newItem) -- Adds newItem to the
    top of the stack.
  • Pop (ItemType item) -- Removes the item at the
    top of the stack and returns it in item.

29
30

class StackTypeltintgt
31
What happens . . .
  • When a function is called that uses pass by
    value for a class object like our dynamically
    linked stack?

32
Passing a class object by value
  • // FUNCTION CODE
  • templateltclass ItemTypegt
  • void MyFunction( StackTypeltItemTypegt SomeStack )
  • // Uses pass by value
  • .
  • .
  • .
  • .

32
33
Pass by value makes a shallow copy
StackTypeltintgt MyStack // CLIENT
CODE . . . MyFunction(
MyStack ) // function call
MyStack
SomeStack
Private data topPtr 7000
Private data 7000
6000 topPtr 7000
20 30
shallow copy
34
Shallow Copy vs. Deep Copy
  • A shallow copy copies only the class data
    members, and does not copy any pointed-to data.
  • A deep copy copies not only the class data
    members, but also makes separately stored copies
    of any pointed-to data.

35
Whats the difference?
  • A shallow copy shares the pointed to data with
    the original class object.
  • A deep copy stores its own copy of the pointed to
    data at different locations than the data in the
    original class object.

36
Making a deep copy
MyStack
Private data 7000
6000 topPtr 7000
20 30
SomeStack
Private data 5000
2000 topPtr 5000
20 30
deep copy
37
Suppose MyFunction Uses Pop
  • // FUNCTION CODE
  • templateltclass ItemTypegt
  • void MyFunction( StackTypeltItemTypegt SomeStack )
  • // Uses pass by value
  • ItemType item
  • SomeStack.Pop(item)
  • .
  • .
  • .
  • WHAT HAPPENS IN THE SHALLOW COPY SCENARIO?

37
38
MyStack.topPtr is left dangling
StackTypeltintgt MyStack // CLIENT CODE
. . . MyFunction( MyStack )
MyStack
SomeStack
Private data topPtr 6000
Private data 7000
6000 topPtr 7000
? 30
shallow copy
39
MyStack.topPtr is left dangling
NOTICE THAT NOT JUST FOR THE SHALLOW COPY, BUT
ALSO FOR ACTUAL PARAMETER MyStack, THE DYNAMIC
DATA HAS CHANGED!
MyStack
SomeStack
Private data topPtr 6000
Private data 7000
6000 topPtr 7000
? 30
shallow copy
40
As a result . . .
  • This default method used for pass by value is not
    the best way when a data member pointer points to
    dynamic data.
  • Instead, you should write what is called a copy
    constructor, which makes a deep copy of the
    dynamic data in a different memory location.

41
More about copy constructors
  • When there is a copy constructor provided for a
    class, the copy constructor is used to make
    copies for pass by value.
  • You do not call the copy constructor.
  • Like other constructors, it has no return type.
  • Because the copy constructor properly defines
    pass by value for your class, it must use pass by
    reference in its definition.

42
Copy Constructor
  • Copy constructor is a special member function of
    a class that is implicitly called in these three
    situations
  • passing object parameters by value,
  • initializing an object variable in a
    declaration,
  • returning an object as the return value of a
    function.

43
  • // DYNAMICALLY LINKED IMPLEMENTATION OF STACK
  • templateltclass ItemTypegt
  • class StackType
  • public
  • StackType( )
  • // Default constructor.
  • // POST Stack is created and empty.
  • StackType( const StackTypeltItemTypegt
    anotherStack )
  • // Copy constructor.
  • // Implicitly called for pass by value.
  • .
  • .
  • .
  • StackType( )
  • // Destructor.
  • // POST Memory for nodes has been deallocated.
  • private

43
44
Classes with Data Member Pointers Need
  • CLASS CONSTRUCTOR
  • CLASS COPY CONSTRUCTOR
  • CLASS DESTRUCTOR

45
  • templateltclass ItemTypegt // COPY CONSTRUCTOR
  • StackTypeltItemTypegt
  • StackType( const StackTypeltItemTypegt
    anotherStack )
  • NodeTypeltItemTypegt ptr1
  • NodeTypeltItemTypegt ptr2
  • if ( anotherStack.topPtr NULL )
  • topPtr NULL
  • else // allocate memory for first node
  • topPtr new NodeTypeltItemTypegt
  • topPtr-gtinfo anotherStack.topPtr-gtinfo
  • ptr1 anotherStack.topPtr-gtnext
  • ptr2 topPtr
  • while ( ptr1 ! NULL ) // deep copy other nodes
  • ptr2-gtnext new NodeTypeltItemTypegt
  • ptr2 ptr2-gtnext
  • ptr2-gtinfo ptr1-gtinfo
  • ptr1 ptr1-gtnext
  • ptr2-gtnext NULL

45
46
What about the assignment operator?
  • The default method used for assignment of class
    objects makes a shallow copy.
  • If your class has a data member pointer to
    dynamic data, you should write a member function
    to overload the assignment operator to make a
    deep copy of the dynamic data.(See additional
    Lect16)

47
  • // DYNAMICALLY LINKED IMPLEMENTATION OF STACK
  • templateltclass ItemTypegt
  • class StackType
  • public
  • StackType( )
  • // Default constructor.
  • StackType( const StackTypeltItemTypegt
    anotherStack )
  • // Copy constructor.
  • void operator ( StackTypeltItemTypegt )
  • // Overloads assignment operator.
  • .
  • .
  • .
  • StackType( )
  • // Destructor.
  • private

47
48
C Operator Overloading Guides
  • All operators except these . sizeof ?
    may be overloaded.
  • At least one operand must be a class instance.
  • You cannot change precedence, operator symbols,
    or number of operands.
  • Overloading and -- requires prefix form use by
    default, unless special mechanism is used.
  • To overload these operators ( ) member
    functions (not friend functions) must be used.
  • An operator can be given multiple meanings if the
    data types of operands differ.

49
Using Overloaded Binary operator
  • When a Member Function was defined
  • myStack yourStack
  • myStack.operator(yourStack)
  • When a Friend Function was defined
  • myStack yourStack
  • operator(myStack, yourStack)

49
50
Composition (containment)
  • Composition (or containment) means that an
    internal data member of one class is defined to
    be an object of another class type.

A FAMILIAR EXAMPLE . . .
51
ItemType Class Interface Diagram
class ItemType
ComparedTo
Private data value
Print
Initialize
52

Sorted list contains an array of ItemType
SortedType class
MakeEmpty
Private data length info 0
1 2
MAX_ITEMS-1 currentPos
IsFull
LengthIs
RetrieveItem
InsertItem
DeleteItem
ResetList
GetNextItem
53
Inheritance
  • Inheritance is a means by which one class
    acquires the properties--both data and
    operations--of another class.
  • When this occurs, the class being inherited from
    is called the Base Class.
  • The class that inherits is called the Derived
    Class.

AN EXAMPLE . . .
54
Recall Definition of Queue
  • Logical (or ADT) level A queue is an ordered
    group of homogeneous items (elements), in which
    new elements are added at one end (the rear), and
    elements are removed from the other end (the
    front).
  • A queue is a FIFO first in, first out structure.

55
Queue ADT Operations
  • MakeEmpty -- Sets queue to an empty state.
  • IsEmpty -- Determines whether the queue is
    currently empty.
  • IsFull -- Determines whether the queue is
    currently full.
  • Enqueue (ItemType newItem) -- Adds newItem to
    the rear of the queue.
  • Dequeue (ItemType item) -- Removes the item at
    the front of the queue and returns it in item.

55
56
class QueTypeltchargt
QueType
Private Data qFront qRear
QueType
Enqueue
Dequeue . . .
57
  • // DYNAMICALLY LINKED IMPLEMENTATION OF QUEUE
  • include "ItemType.h" // for ItemType
  • templateltclass ItemTypegt
  • class QueType
  • public
  • QueType( ) // CONSTRUCTOR
  • QueType( ) // DESTRUCTOR
  • bool IsEmpty( ) const
  • bool IsFull( ) const
  • void Enqueue( ItemType item )
  • void Dequeue( ItemType item )
  • void MakeEmpty( )
  • private
  • NodeTypeltItemTypegt qFront
  • NodeTypeltItemTypegt qRear

57
58
SAYS ALL PUBLIC MEMBERS OF QueType CAN BE INVOKED
FOR OBJECTS OF TYPE CountedQue
  • // DERIVED CLASS CountedQue FROM BASE CLASS
    QueType
  • templateltclass ItemTypegt
  • class CountedQue public QueTypeltItemTypegt
  • public
  • CountedQue( )
  • void Enqueue( ItemType newItem )
  • void Dequeue( ItemType item )
  • int LengthIs( ) const
  • // Returns number of items on the counted queue.
  • private
  • int length

58
59
class CountedQueltchargt
60
  • // Member function definitions for class
    CountedQue
  • templateltclass ItemTypegt
  • CountedQueltItemTypegtCountedQue( )
    QueTypeltItemTypegt( )
  • length 0
  • templateltclass ItemTypegt
  • int CountedQueltItemTypegtLengthIs( ) const
  • return length

60
61
  • templateltclass ItemTypegt
  • void CountedQueltItemTypegtEnqueue( ItemType
    newItem )
  • // Adds newItem to the rear of the queue.
  • // Increments length.
  • length
  • QueTypeltItemTypegtEnqueue( newItem )
  • templateltclass ItemTypegt
  • void CountedQueltItemTypegtDequeue(ItemType item
    )
  • // Removes item from the rear of the queue.
  • // Decrements length.
  • length--
  • QueTypeltItemTypegtDequeue( item )

61
Write a Comment
User Comments (0)
About PowerShow.com