Overview Class - PowerPoint PPT Presentation

About This Presentation
Title:

Overview Class

Description:

James & Pai ... Doug L. James and Dinesh K. Pai, Multiresolution Green's Function Methods for ... Using Sherman-Morrison-Woodbury... v = v(0) (E ( E)) C-1ET v(0) ... – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 36
Provided by: dougj6
Learn more at: http://www.cs.cmu.edu
Category:

less

Transcript and Presenter's Notes

Title: Overview Class


1
OverviewClass 7 (Thurs, Feb 6)
  • Black box approach to linear elastostatics
  • Discrete Greens function methods
  • Three parts
  • What are Greens functions?
  • Precomputation
  • Fast contact handling via low-rank updates
  • Capacitance matrix algorithm
  • Multiresolution extensions (later)

2
Linear Elastostatic Models (recap from last
class)
  • Small-strain time-independent (static/equilibrium)
    deformation response
  • Various origins, e.g., solid bodies, thin shells,
    abstract linear systems,
  • Various surface representations and
    discretization possible, e.g., FEM, BEM, FVM,
    FDM, spectral,

3
Greens Functions for Interactive Elliptic PDEs
ARTDEFO Accurate Real Time Deformable Objects

In SIGGRAPH 99 Conference
Proceedings, ACM SIGGRAPH, 1999. (with Dinesh K.
Pai) A Unified Treatment of Elastostatic and
Rigid Contact for Real Time Haptics,
Haptics-e, The Electronic Journal of
Haptics Research (www.haptics-e.org), 2(1), 2001.
(w/ DKP)
4
GF Deformation Basis
  • Greens functions are physically based basis
    functions adapted to
  • particular geometry
  • particular constraints
  • GF matrix is an input-output model of the linear
    deformable system (for a particular BVP-type)
  • Relates displacements to tractions, etc.
  • Well focus on surface constraints surface GFs
  • Also works for volumetric quantities
  • displacement, stress, strain, strain-rate, etc.

5
Some Graphics References
  • See webpage
  • Cotin et al., 96/99.
  • James Pai
  • ARTDEFO Accurate Real Time Deformable Objects,
    In SIGGRAPH 99 Conference Proceedings, ACM
    SIGGRAPH, 1999.
  • A Unified Treatment of Elastostatic and Rigid
    Contact for Real Time Haptics, Haptics-e, The
    Electronic Journal of Haptics Research
    (www.haptics-e.org), 2(1), 2001.
  • Doug L. James and Dinesh K. Pai, Multiresolution
    Green's Function Methods for Interactive
    Simulation of Large-scale Elastostatic Objects,
    ACM Transactions on Graphics, Volume 22, No. 1,
    Jan. 2003.

6
Discrete Green's Functions (GFs)(in a
nutshell...)
  • Reference BVP (RBVP)
  • Greens function matrix
  • General solution to RBVP (bar?specified BV)

7
Example Displacement Constrained Model (white
dots indicate fixed vertices)
8
Corresponding Greens Functions
  • GF for this vertex is the response due to a
    vertex force in the x, y and z directions
  • Use linear superposition to combine responses

9
Anatomy of a Greens Function
  • GF column corresponding to jth node, ?j

10
Anatomy of a Greens Function
  • GF corresponding to a single vertex

11
Boundary Value Notation
  • Various model descriptions/spaces possible
  • Variables defined at n nodes/vertices
  • x(x1,x2,,xn)T
  • Continuous displacement u(x) and traction p(x)
    fields,
  • e.g.,
  • Discrete displacement u and traction p fields,
    e.g.,
  • u(u1,u2,,un)T, uku(xk)
  • p(p1,p2,,pn)T, pkp(xk)
  • Force relationship fkakpk, ak??kd?
  • Sign convention (uk,pk)?0

12
Boundary Value Problem (BVP)
  • Specified and unspecified nodal variables
  • (?u, ?p) are complementary node sets specifying
    nodes with u or p constraints
  • BVP Given and (?u, ?p) ? Compute v
  • (Mixed nodal boundary conditions possible)

13
Matrix BVP
  • Linear models formally satisfy
  • Boundary Value Eqn
  • Matrix BVP
  • b represents body force effects.

14
Example BEM (from last class)
  • Identification with BEM equations
  • HuGp
  • (ARTDEFO paper)

15
Recap Solving the BVP
H u G p H,G large dense
  • ? A v z, A large, dense

16
Green's Functions (GFs)
  • Reference BVP (RBVP)
  • Greens function matrix
  • Solutions to RBVP are

17
Data-driven GF Formulation
  • Excellent for interactive applications!
  • Precompute GFs for speed
  • Exploits linearity
  • Avoids redundant work
  • Optional boundary-only description for speed
  • Black-box model definition

18
Force-feedback Rendering
19
More generally...
  • GFs fundamental response of a linear system
  • See whiteboard
  • If Luf BVP then GF, G, satisfies LGdelta
    homog BC.
  • In linear elasticity, there are formulae for
    free space solutions, and a few others.
  • Survey of GFs for other physical phenomena
  • We want Greens functions for a particular
    deformable object ( constraint configuration),
    hence
  • Numerical approx ? discrete Greens functions

20
Fast Capacitance Matrix Algorithms
ARTDEFO Accurate Real Time Deformable Objects

In SIGGRAPH 99 Conference Proceedings, ACM
SIGGRAPH, 1999. (with Dinesh K. Pai) A Unified
Treatment of Elastostatic and Rigid Contact for
Real Time Haptics, Haptics-e, The Electronic
Journal of Haptics Research (www.haptics-e.org),
2(1), 2001. (w/ DKP)
21
Exploiting BVP Equation Structure
22
Boundary Value Changes
Constraint type (position?force) doesnt change
Only the value of the constraint changes
23
Boundary Value Changes
  • BV changes only affect z in Avz
  • Traction-free BC are trivial
  • 000...

24
Boundary Condition Type Changes
Position ? Force constraint type switching
Intermediate BV changes
25
Boundary Condition Type Changes
  • BC change swaps a block column of A

26
Sherman-Morrison-Woodbury
  • Idea Exploit coherence between BVPs
  • s-by-s capacitance matrix ????????
  • Smaller matrix to invert and store!

27
Motivation Changing BVP Type
  • Traction?displacement constraint switching
  • Example single nonzero constraint
  • ? Self-effect relationship
  • ? Equivalent traction constraint
  • ? Equivalent Greens function (displ. constraint)
  • Systematic formulation is CMA

28
Capacitance Matrix Algorithms
  • Solving general BVP using RBVPs GFs
  • Low-rank updating techniques
  • Long history in computing
  • Sherman-Morrison-Woodbury et al. (50)
  • Static reanalysis
  • Contact mechanics Ezawa Okamoto 89
  • Domain decomposition
  • Real time simulation with precomputed GF Cotin
    et al. 96, JamesPai99

29
CMA Notation
  • Updated capacitance node list, S
  • S(S1,S2,,Ss) for s updates.
  • Contact compliance matrix, C
  • C -ET?E
  • Capacitance matrix
  • E dense?sparse row expansion
  • e.g., Sk, EIk??3n?3
  • ET sparse?dense row extraction

30
CMA Formulae
  • Solution to any BVP in terms of ?
  • Direct solver with input/output sensitivity
  • O(s3) C-1 construction for s switched contacts
  • O(s2sn) solve for s nonzero BC and n outputs

Using Sherman-Morrison-Woodbury... v v(0)
(E(?E)) C-1ET v(0) v(0) ?(I-EET) - EET v
B C -ET?E s-by-s capacitance matrix
_
31
CMA Formulae (contd)
32
Capacitance Matrix Algorithm (CMA)
_
  • Compute C-1
  • Compute v(0)
  • Compute s updated BVs
  • ET v C-1ET v(0) ??3s
  • Add correction to v(0) to obtain v
  • v(0) (E(?E)) (C-1ET v(0))
  • (Simpler when v(0) -v )

_
33
Demo!
34
Early ARTDEFO Examples
ARTDEFO Accurate Real Time Deformable Objects

In SIGGRAPH 99 Conference
Proceedings, ACM SIGGRAPH, 1999. (with Dinesh K.
Pai)
35
Capacitance Inverse Updating
  • Sequential inversion
  • Use one C-1 to construct another
  • Exploits temporal coherence between matrix BVP
  • O(s2s?) cost for s? BC changes
  • Effective updating of explicit matrix inverse

36
Capacitance Inverse Updating
37
Haptic Interaction
Write a Comment
User Comments (0)
About PowerShow.com