Title: LENA
1LENA
LENA Delta
- Low Energy Neutrino Astrophysics
L. Oberauer, F. von Feilitzsch, C. Grieb, K.
Hochmuth, C. Lendvai, T. Marrodan, L.
Niedermeier, W. Potzel, M. Wurm Technische
Universität München www.e15.physik.tu-muenchen.de
/research/lena.htlm
2Groups interested in LENA
- TU Munich, Germany
- Univ. Hamburg, Germany (C. Hagner)
- CUPP, Finland (J. Peltoniemi)
- Univ. Jyväskylä, Finland (J. Aysto)
- INR, Russia (L. Bezrukov)
- Similar initiative
- HSD (Hyper-Scintillation-Detector) Kimballton
mine, Virginia, USA
3LENA
Proposal A large (50 kt) liquid
scintillator underground detector for
- Baryon number violation
Proton decay - Gravitational collapse
SN n detection - Star formation in the early universe
Relic SN n - Solar thermonuclear fusion processes
CNO, pep, 7Be - Geophysical models
U, Th - n - Neutrino properties Long
baseline - n
4LENA Detector and scintillating liquid
100m
30m
Muon veto
12000 Pms (50cm)
- Scintillator solvent PXE, or PXE/mineral oil
mixture - non hazardous, flashpoint 145 C easy
handling - density 0.99 high self shielding
- high light yield low energy events
- low background level U, Th solar n, geo n,
srn n
5PXE as scintillating solvent
- PXE tests _at_ Counting Test Facility from BOREXINO
at Gran Sasso (physics/0408032) - 372 pe / MeV _at_ 20 coverage
- lattenuation 4 m _at_ 430 nm
- lattenuation 12 m after purification
- (alumina-column, S. Schönert MPIK Hd for LENS)
- gt 120 pe / MeV in LENA (central events)
-
- gt low energy threshold (sub-MeV)
- gt good resolution in energy and position
reconstruction
CTF
6Program for investigations of PXE / dodecane
mixtures
- C, Buck et al., MPIK Heidelberg
- (Double-Chooz)
- M. Wurm, K. Hochmuth, TUM
- improve compability with detector materials
- improve further transparency?
- increase free H number (by 30)
90 light yield with 40 PXE and 60 dodecane
M. Wurm
7Possible locations for LENA
Underground mine 1450 m depth, low
radioactivity, low reactor n-background !
Access via trucks
8LENA at CUPP
- transport of PXE via railway
- loading of detector via direct pipeline
- no fundamental security problem with PXE !
- no fundamental problem for excavation
- standard technology (PM-encapsulation,
electronics etc.) - LENA is feasible in Pyhäsalmi !
9Pylos (Nestor Institute) in Greece
10- Proton Decay and LENA
- p K n
- This decay mode is favoured in SUSY theories
- The primary decay particle K is invisible in
Water Cherenkov detectors - The Kaon and the K-decay particles are visible
in LENA - Better energy solution further reduces
background
11K-gtm n 63.4
K-gtpp0 21.1
Teresa Marrodan
12bg-events
P-decay
bg-events
- Event structure p -gt K n plus K decay
(T1/2 12.8 ns) - 3-fold delayed coincidence from m - decay
13Potential of LENA for p -gt Kn SuperK current
limit t 1.6 x 1033 y 27 events in 10 years
in LENA (0.7 bg events) No signal t gt 3 x
1034 y
14Galactic Supernova neutrino detection with Lena
Electron Antineutrino spectroscopy
7800
Electron n spectroscopy 65
480
- Neutral current interactions info on all
flavours 4000 and 2200
Event rates for a SN type IIa in the galactic
center (10 kpc)
15Visible proton recoil spectrum in a liquid
scintillator
all flavors
nm, nt and anti-particles dominate
J. Beacom, astro-ph/0209136
16Relative size of the different luminosities is
not well known it depends on uncertainties of
the explosion mechanism and the equation of
state of hot neutron star matter
Supernova neutrino luminosity (rough sketch)
T. Janka, MPA
17SNN-detection and neutrino oscillations with LENA
Modulations in the energy spectrum due to matter
effects in the Earth
Dighe, Keil, Raffelt (2003)
18SNN-detection and neutrino oscillations
ne
Water Cherenkov
Scintillator good resolution
Modulations in the energy spectrum due to matter
effects in the Earth
Dighe, Smirnov, Keil, Raffelt
19Preconditions for observation of those
modulations
- SN neutrino spectra ne and nm,t are different
- distance L in Earth large enough
Dependence on hierarchy and Q13
20Survival probability
Mixing angle between ne and n2 in Earth matter
Mass difference squared in Earth matter
21- LENA and relic Supernovae Neutrinos !
- SuperK limit very close to theoretical
expectations - Threshold reduction from 19 MeV (SuperK) to
9 MeV with LENA - Method delayed coincidence of ne p -gt e n
- Low reactor neutrino background !
- Information about star formation in the early
universe
22Reactor SK
No background for LENA !
Reactor bg LENA !
SRN
6 counts/y
Atmospheric neutrinos
23Low energy atmospheric neutrinos and LENA
- LENA can measure the low energy part of
atmospheric neutrinos, esp. ne - 30 MeV - 200 MeV ne
- Losc 103 km to 7 x 103 km
- (Dm2 solar neutrinos!)
- ne lt-gt nm atmospheric oscillations, but
based on Dm2solar - observable ?
- ...difficult (low statistics) needs further
investigations
24- Thermal nuclear fusion and LENA
- high statistic 7Be-solar n detection (104 d-1)
- test of even small flux variations
- look for coincidences with helioseismological
data ! - CNO and pep-n (300 d-1)
- solar neutrino luminosity
- precise determination of solar nuclear fusion
processes
25Long baseline n - oscillations and LENA ?
- To be investigated in detail
- n spectrum (off-axis)
- e, m - separation potential
- potential in Q13
!
26Solar Neutrinos and LENA Probes for Density
Profile Fluctuations !
Balantekin, Yuksel TAUP 2003 hep-ph/0303169
7-Be 200 / h LENA
27- Geo - neutrinos and LENA
- what is the source of the terrestrial heat flow
? - what is the contribution of natural
radioactivity ? - how much of U, Th is in the mantle ?
- is there a natural reactor at the Earths
center?
28- Angular distribution information
- reconstruct vertices of prompt and delayed
events - resolution 30o (MonteCarlo)
maximum model
Core enhanced
minimal model
K. Hochmuth
Q (rad)
Events per year
0 lt ? lt 60 60 lt ? total
ref 618 25 822 29 1440 38
min 453 21 653 27 1106 33
max 1255 35 1365 37 2620 51
core 950 31 858 29 1807 43
29P -gt K n event structure
T (K) 105 MeV
t (K) 12.8 nsec K -gt m n
(63.5 ) K -gt p p0 (21.2 ) T
(m) 152 MeV T (p) 108 MeV
electromagnetic shower
E 135 MeV m -gt e
n n (t 2.2 ms) p -gt m n (T 4
MeV) m -gt e n n (t 2.2 ms)
30- 3 - fold coincidence !
- the first 2 events are monoenergetic !
- use time- and position correlation !
- How good can one separate the
- first two events ?
- ....results of a first Monte-Carlo calculation
31Signal in LENA
m
m
K
K
time (nsec)
P decay into K and n
32- Background
- Rejection
- monoenergetic K- and m-signal!
- position correlation
- pulse-shape analysis
- (after correction on
- reconstructed position)
33Sensitivity of LENA ?
- SuperKamiokande has 170 background events in
1489 days (efficiency 33 ) - In LENA, this would scale down to a background of
5 / y and after PSD-analysis this could be
suppressed in LENA to - 0.25 / y ! (efficiency 70 )
- A 30 kt detector ( 1034 protons as target)
would have a sensitivity of t lt a few 1034
years for the K-decay after 10 years measuring
time - The minimal SUSY SU(5) model predicts the K-decay
mode to be dominant with a partial lifetime
varying from 1029y to 1035 y ! - actual best limit from SK t gt 6.7 x 1032 y
(90 cl)
34- Conclusions
- LENA a new observatory
- complemntary to high energy neutrino
astrophysics - fundamental impact on e.g. proton decay,
astrophysics, neutrino physics, geophysics - feasibility studies very promising (CUPP,
Pyhäsalmi) - costs ca. 100 - 200 M