Eutrophication - PowerPoint PPT Presentation

1 / 42
About This Presentation
Title:

Eutrophication

Description:

Food for a catch of 100 million tons fish/yr. Produces much oxygen ... Algal Carbon: PRPC-GRPC-DEPC-SEPC. Algal Nitrogen: PRPN-GRPN-DEPN-SEPN ... – PowerPoint PPT presentation

Number of Views:542
Avg rating:3.0/5.0
Slides: 43
Provided by: course4
Category:

less

Transcript and Presenter's Notes

Title: Eutrophication


1
Eutrophication
  • Nutrient Enrichment Algal Growth

2
Content
  • Systems analysis
  • Algal Growth
  • Species
  • Light
  • Temperature
  • Nitrogen
  • Phosphorous
  • Limiting Factors
  • Other Processes

3
Global Primary Production
4
Phytoplankton What's the Big Deal?
  • Fastest growing plants
  • Very small
  • Never dry
  • Food for a catch of 100 million tons fish/yr.
  • Produces much oxygen
  • And removes CO2 from the atmosphere

5
EutrophicationIs this a Problem?
  • Nutrient enrichment is goodPromotes biological
    production
  • Too much is bad
  • Turbid water
  • Oxygen deficit problems
  • Toxic algae
  • Red Tide, Shellfish Poisoning, Ciguaterra

http//www.redtide.whoi.edu/hab/
6
The Transport Equation
7
Systems Analysis
  • State Variables
  • Processes
  • Forcing Functions

8
Primary Production, Basic Equations
Algal Carbon PRPC-GRPC-DEPC-SEPC Algal Nitrogen
PRPN-GRPN-DEPN-SEPN Algal Phosphorous
PRPP-GRPP-DEPP-SEPP Chlorophyll-a
PRCH-DECH-SECH Zooplankton PRZC-EKZC-DEZC Detritu
s Carbon DEPCSLMCSLACEKZCDEZC-REDC-SEDC Detri
tus Nitrogen DEPNSLMNSLANEKZNDEZN-REDN-SEDN D
etritus Phosphorous DEPPSLMPSLAPEKZPDEZP-REDP
-SEDP Inorganic Nitrogen REDNREZNRESN-UNMNREBN
Inorganic Phosphorous REDPREZPRESP-UNMPREBP D
issolved Oxygen ODPCODMCODAC-ODDC-ODZC-ODSCREA
R Sediment Carbon SEPCSEDC-REDC Macroalgae
PRMC-SLMC-REMC Sea grass PRAC-SLAC-REAC
9
Naming Conventions
  • Be Consistent Systematic
  • State Variables Two letters, PC, DO etc
  • Processes 4 letters PRPC, ODDC
  • Do not hope for perfection

10
Primary production, Basic Equation
PRPCµmax(art)f(T)f(I)f(P)f(N)PC
  • Where
  • µmax is a specific maximal algal growth rate
  • T is temperature
  • I is light insulation
  • P is phosphorous
  • N is nitrogen

11
Primary production, Biomass
PRPCµmax(art)f(T)f(I)f(P)f(N)PC
Where µmax is a specific maximal algal growth
rate T is temperature I is light insolation P is
phosphorous N is nitrogen
Chlorophyll in lake Mjøsa
12
The C14-method
  • The Sea The Danish way to power and glory
  • Steemann Nielsen the Galathea expedition
  • Addition of C14 in light and darkness

http//www.iopan.gda.pl/kaczmar/bdo/primprod.htm
13
Growth Limitation
Exponential Growth
Logistic Growth
14
Limiting factor
  • The factor in short supply decides the growth
  • A chain is not stronger than its weakest link
  • If you control one factor, you control all

15
Gross- and Net Production
Gross GBPRPCNet GNGB-R Where RkrPC and
krrespiration parameter
http//dixon.gso.uri.edu/images/line-d.jpg
16
Species Succession
  • Diatoms
  • Made of glass
  • Sinks quickly
  • Dinoflagellates
  • Swimming Algae
  • Cyanobacteria
  • Floats
  • Make their own nitrogen

http//www.comet.chv.va.us/GEK/phytob.htm
17
Algal Composition
  • C106H263O110N16P
  • C 36, N 6,3, P0,9
  • The ratios are variable
  • Equivalent oxygen demand 0.96 mgO2/mg dry weight
  • Oxygen/Carbon Ratio 2.6

18
Primary production, Temperature
PRPCµmax(art)f(T)f(I)f(P)f(N)PC
Where µmax is a specific maximal algal growth
rate T is temperature I is light insulation P is
phosphorous N is nitrogen
19
Temperature Dependence
20
Primary production, Light
PRPCµmax(art)f(T)f(I)f(P)f(N)PC
Where µmax is a specific maximal algal growth
rate T is temperature I is light insulation P is
phosphorous N is nitrogen
21
Light and Depth
Light
The Photic Zone
Depth
22
Algal Growth and Light
Photosynthesis
Saturation
Inhibition
Light
23
Algal Production and Depth
R
PB
The total production is integrated over depth
Compensation depth
GBR
24
Secchi Depth and Chlorophyll
Danish Coastal Waters
10m
10
100 µg/l
25
Primary production, Nutrient
PRPCµmax(art)f(T)f(I)f(P)f(N)PC
Where µmax is a specific maximal algal growth
rate T is temperature I is light insulation P is
phosphorous N is nitrogen
26
Primary Production
Algal Carbon PRPC-GRPC-DEPC-SEPC Algal Nitrogen
PRPN-GRPN-DEPN-SEPN Algal Phosphorous
PRPP-GRPP-DEPP-SEPP Chlorophyll-a
PRPH-DEPH-SEPH Zooplankton PR-ZC-DEZC Detritus
Carbon DEPCSLMCSLACEKZCDEZC-REDC-SEDC Detritu
s Nitrogen DEPNSLMNSLANEKZNDEZN-REDN-SEDN Det
ritus Phosphorous DEPPSLMPSLAPEKZPDEZP-REDP-S
EDP Inorganic Nitrogen REDNREZNRESN-UNMNREBN I
norganic Phosphorous REDPREZPRESP-UNMPREBP Dis
solved Oxygen ODPCODMCODAC-ODDC-ODZC-ODSCREAR
Sediment Carbon SEPCSEDC-REDC Macroalgae
PRMC-SLMC-REMC Sea grass PRAC-SLAC-REAC
Algal Carbon PRPC-GRPC-DEPC-SEPC Algal Nitrogen
PRPN-GRPN-DEPN-SEPN Algal Phosphorous
PRPP-GRPP-DEPP-SEPP Chlorophyll-a
PRPH-DEPH-SEPH Zooplankton PR-ZC-DEZC Detritus
Carbon DEPCSLMCSLACEKZCDEZC-REDC-SEDC Detritu
s Nitrogen DEPNSLMNSLANEKZNDEZN-REDN-SEDN Det
ritus Phosphorous DEPPSLMPSLAPEKZPDEZP-REDP-S
EDP Inorganic Nitrogen REDNREZNRESN-UNMNREBN I
norganic Phosphorous REDPREZPRESP-UNMPREBP Dis
solved Oxygen ODPCODMCODAC-ODDC-ODZC-ODSCREAR
Sediment Carbon SEPCSEDC-REDC Macroalgae
PRMC-SLMC-REMC Sea grass PRAC-SLAC-REAC
27
Growth Equations, Intracellular
28
Growth Equations, structure
29
Growth Equations
30
Growth Rates
S,C,X
S
S0
X
Ci,max
CiCaCe
Ce
Sc
C
Ca
Time
31
Growth Rate and P
µ/µmax
Ci,max
Monod kinetics
Ca
Ci
  • Halfsaturation

32
Vollenweider updated
33
Growth Rate and N
Ci,max
µ/µmax
Ci
Ca
34
Chemostate Experiments
QXind
QXud
Algal production
QSind
QSud
Balance for biomass Balance for Nutrient
35
Chemostat Experiment, Special Case
Freely available dissolved substrateThe Algae
grow with highest possible rates and are filled
with nutrients
  • NB No algae in rivers

36
Nitrogen or Phosphorous
Thats the Question
  • Denmark has Chosen both
  • Agriculture pointed on P!
  • The cities on N!

37
Liebigs Law of the Minimum
Justus Liebig, a German agricultural chemist,
proposed in 1840 that plants were limited by that
element in the shortest supply relative to their
capabilities. A useful concept, although it does
not account for
  • toxicity at high levels of that element
  • suggests that only a single element is limiting
  • fails to consider interactions

http//www.cals.ncsu.edu/ncsu/cals/course/bo360/ph
yseco1/tsld006.htm
38
Determine Limitation?
  • Measure inorganic material in water
  • Plt2 mg/mg3
  • Nlt14mg/m3
  • Bioassays
  • Models
  • Political vote!

http//www.brooks.af.mil/HSC/products/doc95.html
39
Turnover Rates of Nutrients
  • Difference in rates
  • P is recycled faster than N
  • Degradable fractions
  • Organic N is quite stable

40
Transients
  • P can be accumulated in and released from
    sediment
  • Which delays effect of treatment
  • N is gone with the water
  • Treatment works immediately

41
Natural Background
  • Boundary values
  • The Oceans are primarily N-limited (Iron)
  • Denitrification/N-fixation
  • Baltic Sea
  • In lakes the boundary for P is zero
  • The past
  • No changes in the major oceans
  • A 2-200 times in lakes and coastal areas

42
Discussion N and/or P
  • P in lakes and some lagoons
  • P-removal will work
  • N i in the sea
  • N-removal will work
  • P-removal is waste of money

43
Other Processes
  • Use 1.order kinetics as a start
  • Examples BOD oxygenation, Bacteria Decay

44
The End
Write a Comment
User Comments (0)
About PowerShow.com