Title: Aucun titre de diapositive
1Thermal Multiscale Modeling of Nanoparticle
based Materials
Sebastian Volz1, Jean-Jacques Greffet1 Denis
Rochais2, Gilberto Domingues2 and Karl Joulain3
1Laboratoire dEnergétique Moléculaire et
Macroscopique, Combustion, CNRS - Ecole Centrale
Paris - France 2Laboratoire Microstructrures et
Comportements CEA/Le Ripault, Monts,
France 3Laboratoire dEtudes Thermiques Ecole
Nationale Supérieure de Mécaniques et
dAérotechniques Poitiers
Nanoscale Energy and Information Processing
Device - Workshop
2Content
1 Intro
2 Thermal Conductance Between Two Nanoparticles
3- Near field and Clustering
3Clustering
DECREASE THERMAL CONDUCTIVITY Aerogels SiO2
amorphous particle 10nm in diameter Porosity
90, open paths 100nm-1micron 15 mW/mK in
ambient and 5 mW/mK at primary vacuum
4Near Field
INCREASE THERMAL CONDUCTIVITY
Colloidal solution
Uniformely dispersed Nanoparticles
52-Thermal Conductance between two Particles
d
T1
T2
L wvlength
L
Interaction between 2 Bodies o Classical
Radiation Far Field L,d gtgtL o Near-Field
Radiation LltdltL GNFgt106 W.m-2.K-1 Not done
yet for NPs o Conduction GCDl/d1010
W.m-2.K-1
6Modeling
7Near-Field
1 NP 1 DIPOLE 1 polarisation, 1 Local Field EL
Sphere
8Physical Mechanism
d-6 dipole-dipole interaction - aV gt G R6
p
9Molecular Dynamics
ATOM MASS POINT
fij in SILICA BKS POTENTIAL U(rij)qiqje2/r
ij Aij exp(-Bij.rij) - Cij/rij6
COULOMB SHORT RANGE VdW and REPULSIVE
60nm 1nm
POSITIONS Beta-cristobalite lattice cell
1800K
10MD Experiment
? COMPUTE THE NET POWER BETWEEN NP1 and NP2 AT
EQUILIBRIUM
11MD Output
FLUX- FORCE
DISSIPATION
W.K-2
FD THEOREM
Puech 1986, Barrat 2003
12Results
Atom Heat Capacity / Atomic Period x Number of
Atoms 3kB x f x N 3 x 1.38.10-23 x 3.1013 x
3000 4 10-6 W/K
13Near FieldgtThermal Conductivity Increase
Unifomely dispersed NPs
q2i
q4i
i
q1i
3D
q3i
PROBLEM Gji 10-20 to 10-3 W/K gt ITERATIONS
14Convergence
1 Week Calculation on 1 CPU 1000 NPs
T
Lx
LY
Lx
LZ
15Volume Fraction
16Aerogels Thermal Modeling
Heat Conduction
Near-Field Radiation neglected
10Volume Fraction lt Percolation Thermal Pathes
ltgt Structure
17Aerogel Skeleton
Aggregates with realistic fractal dimension
1.8 Kolb-Botet-Jullien Model (PRL, 51, 1123,
1983) Particles with inital random
positions Particles move one by one Make a
cluster with neighbours The clusters move as
particle (no rotation)
18Results
2D structure Df1.4 3D structure Df1.77
19Scattering of Contact Resistance
50 MD experiments with different NPs contact gt
50 R values Random choice of R
20Effective Thermal Conductivitiy
Hot Plate experiment
21Results
25000 particles, 2D
50 MD experiments with different NPs contact gt
50 R values Random choice of R
22Conclusion
Clusters in Air
Experiments
Numerical
Near-Field
Clusters in Vacuum
Air
23Conclusion
- o Modeling/Experiments agree in Aerogels (no NF
paths) - o Uniform NPs Dist. early NF percolation gt
many percolation paths - Application Heat Sink/Dirty Material
- Coupling clustering and Near-Field
- Fractal dimension and Thermal Conductivity
24THANK YOU !