Title: KAIST ????
1?????? ??
2(No Transcript)
3(No Transcript)
4(No Transcript)
5????? ???
- 1 MIPS ???? 1016?? ?? ? ??? ?? ?
- ????? 300 ?
- ????? 1 ?
- ?? ??? ?? NSA?? ??
- ???? ??? ??? ????
- ?? ??? ??? ??
6??? ??
7???? ??
???? ??
????
????
???? ????
????
????
????
????
??? 10 nm ???
8- ??????
- ??? ?? ??
- (0? 1? ??) (??, ??)
Ex)
9Quantum Information Technology
Key words Superposition, Entanglement,
Uncertainty, Interference
10- ??????
- ??? ?? ??
- (0? 1? ??) (??, ??)
Ex)
111???? ?? ????
12????
- ???? ??
- ??? ? ??? 1/10 ???? ??
- ??? ??
- ?? ?? ???? ??
- ??? ??
- ? ? ?? ?? ?? ?? 1 km/s
- ? ? ?? ?? ?? ?? 0.1 mm
- ?? ???? ???? ???? ?? ??
13???? ????
14?? - ????? ??
?? ?
?? ?
15Postulates of quantum mechanics(Copenhagen
interpretation)
- (1) Schrodinger equation
- (2) Probability of being at x and t
- (3) Physical quantity operator
- (4) Eigenstate and eigenvalue
16Ex)
17I cannot believe that God plays dice with the
universe.
Dont say God what to do.
VS
Niels Bohr
Albert Einstein
18?? - ????? ??
?? ?
?? ?
?? ??
19Schrodingers cat
Erwin Schrodinger
20- Collapse of a superposed state or just our
ignorance?
21??(Entanglement)
- ???? ??? ????? ??? ??? ???? ?? ??
- ?) ?? ??
- ? ?? ??
22I cannot believe that a cat could
drastically change the state of the moon by
merely looking at it The belief in an external
world independent of the perceiving subject is
the basis of all natural science
Thanks to Einsteins work, physicists have come
to realize that space and time are not absolute
but relative to an observers state of motion. In
quantum theory, we simply take this way of
thinking one step further. Why did Einstein find
it so difficult to accept this natural extension
of his own ideas?
A good joke should not be repeated twice.
23Light polarization
24Quantum Eraser
25(No Transcript)
26(No Transcript)
27I can safely say that nobody understands quantum
mechanics
Richard Feynman
28????? ?? ??? ??? ??? ???, ??? ??? ???? ???? ??.
????? ??? ??? ???? ??.
Murray Gellman
292???? ????
30- Rolf Landauer
- ???? ???? ???
- ??? ???? ??? ??
- ???? ??? ??
31- ??? ???
- ????
- ???? ??
- ???? ?????
- ???
- ???? ??
- ??? ??
32History (of theoretical QIT)
- 1973 Reversible Computing
- 1982 Quantum Computing
- 1984 Quantum Cryptography
- 1993 Quantum Teleportation
33Charles Bennet
34??
- ???? ??
- ?? ABC DEF (??2)
- ????? ?? ??
- ???, ???? (???? ?? ??)
- ?? ???? ?? ?? ??
- ?? ?? ??
- RSA ???? ?????
35Quantum Cryptography(??????)
(1) single photon
36??????(Quantum Cryptography)
37???? ?? ?
1
0
0
1
1
???
???
???
38(No Transcript)
39(No Transcript)
40Quantum Teleportation
41Quantum Teleportation
?
42(No Transcript)
43(No Transcript)
44Alices Bell Measurement
?? ? ?? ??
45(No Transcript)
46??? ???? ? ??.
Benjamin Schumacher
47No cloning theorem
?? ???? ??? ??? ? ??.
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52Quantum Communication
- Quantum Cryptography
Stucki, Gisin, et al. (Switzerland),
67 km - New Journal of Physics 4, 1 (2002)
(http//www.idquantique.com/qkd.html) - Quantum Teleportation
- Marcikic, Gisin, et al. (Switzerland),
- 55m, 2 Km fiber
- Nature 421, 509 (2003)
- 2003. 4.
53(No Transcript)
54??????
- Quantum computation
- Quantum teleportation
- Quantum cryptography
- Quantum dense coding
- Quantum lithography
- Quantum feedback
553??????
56History (of quantum computing)
- 1973 Bennett Reversible computing
- 1980 Benioff Quantum system as RC
- 1982 Feynman Quantum computing
- 1985 Deutsch first QC algorithm
- 1994 Shor factorization algorithm
- 1996 Grover search algorithm
- 1997 Implementation of QC by NMR
- 2003 ?
-
57- Shors factorization algorithm
- QC (logN)2x steps (xltlt1)
- classical computer expN1/3(logN)2/3
- ???????? ??
- ??????? ??? ???? ??
- Grovers search algorithm
- for N data search, QC N1/2 try
- classical computer N/2 try
- ex) if N256 1 MIPS, 1000 year vs. 4 min.
- ???????? ??(?)
58(No Transcript)
59(No Transcript)
60Single qubit operation
61(No Transcript)
62(No Transcript)
63??????
- ?? ????? ?? ???
- N ??? 2N ?? ?? ??
- ?? - ? ??? ??? ?? ???? ??
- ex) ?? ?? ?? ?? (0gt1gt)A(0gt1gt)B
- ?? ?? ?? 1gt2gt 0gtA1gtB1gtA0gtB
-
64 ????? (NMR Nuclear Magnetic Resonance)
- ???? ??? ????
1) J. Kim, J.-S. Lee, and S. Lee, Phys. Rev. A
61, 032312 (2000). 2) J. Kim, J.-S. Lee, S. Lee,
and C. Cheong, submitted to Phys. Rev. A
65Requirements for a Quantum Computer (1) qubit
two quantum states with good quantum (2) Set
by measurement or thermal equilibrium ex)
(3) Read (4) Single qubit operation
(addressible) physical addressing or
resonance tech. (5) Interaction (controllable)
well defined and on-off ---------------------
---------------------------------------- (6)
Coherence isolation from environment (and other
qubits) (7) Scalability
66Quantum systems suggested as QC
Atomic and Molecular Ion trap Cavity
QED NMR Molecular magnet N_at_C60(fullerine) BEC Sol
id State Quantum dot Superconductor Si-based QC
Optical Photon Photonic crystal
Electron beam el. floating on liquid He el.
trapped by SAW el. trapped by magnetic field
67- (1) qubit - two states with good quantum
- energy el. floating in LHe
- charge quantum dot
- spin quantum dot, molecular magnet, ion
trap, - NMR, Si-based QC
- photon optical QC, cavity QED
- cooper pair superconductor
- fluxoid superconductor
68Requirements for a Quantum Computer (1) qubit
SPIN (2) Set by measurement or thermal
equilibrium ex) (3) Read (4) Single qubit
operation (addressible) physical addressing
or resonance tech. (5) Interaction (controllable)
well defined and on-off (6) Coherence
isolation from environment (and other qubits)
69- (6) Long coherence Isolate qubits
- in vacuum ion trap, el. floating in LHe
- by flying methods using photon,
- els trapped by SAW or
magnetic field - in molecule NMR
- in quantum well quantum dot, superconductor
- inside solid Si-based QC
70Requirements for a Quantum Computer (1) qubit
SPIN (2) Set by measurement or thermal
equilibrium ex) (3) Read (4) Single qubit
operation (addressible) ? ??? ??? ??? ???
?? (5) Interaction (controllable) well
defined and on-off (6) Coherence solid state
device
71Ion trap
Qubit - ion spin state Single spin operation -
laser Inertaction - vibration(CM motion)
72Si-based QC
- Qubit nuclear spin of P
- Coherence time at 1.5 K
- - el. spin 103 S
- - n. spin 10 hours
- Reading using resonance
- and hyperfine interaction
- Silicon technology
rf ??
??
A A
???
Si
P
73Requirements for a Quantum Computer (1) qubit
SPIN (2) Set (3) Read (4) Single qubit
operation (addressible) ? ??? ??? ??? ???
?? (5) Interaction (controllable) well
defined and on-off (6) Coherence solid state
device
74Si-based QC
rf ??
- Interaction RKKY
- Distance between P 10 nm
- Read by SET or MRFM
- hyperfine interaction eng.
??
A J A
???
Si
P
75Requirements for a Quantum Computer (1) qubit
SPIN (2) Set (3) Read Single spin
detection (4) Single qubit operation
(addressible) ? ??? ??? ??? ??? ?? (5)
Interaction control (6) Coherence solid state
device
76Si-based QC
rf ??
A J A
SET
77 Magnetic Resonance Force Microscopy (MRFM)
- Scanning Probe? ??? ?? - ???? ??
78???
2003.7
??????
??????
? ? ? ? ? ? ? ?
???
???
???
???
?????
Si-base QC
..100
??
0 1 2 3 4 5 6 7.
79Environment
measurement
EM field
80- Conclusion of QC
- Developing QC is the key issue.
- Development of QC depends on nanotechnology (
spintronics). - Development of QC requires precise control of
- Reading single spin detection
- Interaction between qubits
- with environment
81??
?? ??
??? ??
??
?? ??
??? ???
????
?? ??
NP- complete
??? ??
??? ??
?? ??
??? ??
???
Bio- informatics
82- ???????
- -100??? ????? ??? ??
- - ??? ???????
control
??? ???? ??? ?? ??? ??, ??
????
???, ???
??? ???? ?? ??? ??? ?? ??
nm
????
size
83(No Transcript)
84 The END