Title: Introduction to Artificial Neural Networks
1Introduction to Artificial Neural Networks
- Andrew L. Nelson
- Visiting Research Faculty
- University of South Florida
2Overview
- Outline to the left
- Current topic in red
- Introduction
- History and Origins
- Biologically Inspired
- Applications
- Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
3References
- W. S. McCulloch, W. Pitts, "A logical calculus of
the ideas immanent in nervous activity,"
Bulletin of Mathematical Biophysics, vol. 5 pp.
115-133, 1943. - J. L. McClelland, D. E. Rumelhart, Parallel
Distributed Processing Explorations in the
Microstructure of Cognition, The MIT Press, 1986. - C. M. Bishop, Neural Networks for Pattern
Recognition, Oxford University Press, 1995.
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
4Introduction
- Artificial Neural Networks (ANN)
- Connectionist computation
- Parallel distributed processing
- Computational models
- Biologically Inspired computational models
- Machine Learning
- Artificial intelligence
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
5History
- McCulloch and Pitts introduced the Perceptron in
1943. - Simplified model of a biological neuron
- Fell out of favor in the late 1960's
- (Minsky and Papert)
- Perceptron limitations
- Resurgence in the mid 1980's
- Nonlinear Neuron Functions
- Back-propagation training
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
6Summary of Applications
- Function approximation
- Pattern recognition
- Signal processing
- Modeling
- Control
- Machine learning
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
7Biologically Inspired
- Electro-chemical signals
- Threshold output firing
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
8The Perceptron
- Binary classifier functions
- Threshold activation function
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
9The Perceptron Threshold Activation Function
- Binary classifier functions
- Threshold activation function
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
10Linear Activation functions
- Output is scaled sum of inputs
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
11Nonlinear Activation Functions
- Sigmoid Neuron unit function
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
12Layered Networks
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
13SISO Single Hidden Layer Network
- Can represent and single input single output
functions y f(x)
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
14Training Data Set
- Adjust weights (w) to learn a given target
function y f(x) - Given a set of training data X?Y
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
15Training Weights Error Back-Propagation (BP)
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
16Error Back-Propagation (BP)
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
17BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
18BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
19BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
20BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
21BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
22BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
23BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
24BP Formulation
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
25Example The XOR problem
- Single hidden layer 3 Sigmoid neurons
- 2 inputs, 1 output
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
x1 x2 y
Example 1 0 0 0
Example 2 0 1 1
Example 3 1 0 1
Example 4 1 1 0
Desired I/O table (XOR)
26Example The XOR problem
- Training error over epoch
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
27Example The XOR problem
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
initial_weights 0.0654 0.2017 0.0769
0.1782 0.0243 0.0806 0.0174 0.1270
0.0599 0.1184 0.1335 0.0737
0.1511 final_weights 4.6970 -4.6585
2.0932 5.5168 -5.7073 -3.2338 -0.1886
1.6164 -0.1929 -6.8066 6.8477 -1.6886
4.1531
28Example The XOR problem
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples
Mapping produced by the trained neural net
x1 x2 y
Example 1 0 0 0.0824
Example 2 0 1 0.9095
Example 3 1 0 0.9470
Example 4 1 1 0.0464
29Example Overtraining
- Single hidden layer 10 Sigmoid neurons
- 1 input, 1 output
- References
- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples