Introduction to Artificial Neural Networks - PowerPoint PPT Presentation

About This Presentation
Title:

Introduction to Artificial Neural Networks

Description:

Introduction to Artificial Neural Networks Andrew L. Nelson Visiting Research Faculty University of South Florida Overview Outline to the left Current topic in red ... – PowerPoint PPT presentation

Number of Views:489
Avg rating:3.0/5.0
Slides: 30
Provided by: nelsonrob
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Artificial Neural Networks


1
Introduction to Artificial Neural Networks
  • Andrew L. Nelson
  • Visiting Research Faculty
  • University of South Florida

2
Overview
  • Outline to the left
  • Current topic in red
  • Introduction
  • History and Origins
  • Biologically Inspired
  • Applications
  • Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

3
References
  • W. S. McCulloch, W. Pitts, "A logical calculus of
    the ideas immanent in nervous activity,"
    Bulletin of Mathematical Biophysics, vol. 5 pp.
    115-133, 1943.
  • J. L. McClelland, D. E. Rumelhart, Parallel
    Distributed Processing Explorations in the
    Microstructure of Cognition, The MIT Press, 1986.
  • C. M. Bishop, Neural Networks for Pattern
    Recognition, Oxford University Press, 1995.
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

4
Introduction
  • Artificial Neural Networks (ANN)
  • Connectionist computation
  • Parallel distributed processing
  • Computational models
  • Biologically Inspired computational models
  • Machine Learning
  • Artificial intelligence
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

5
History
  • McCulloch and Pitts introduced the Perceptron in
    1943.
  • Simplified model of a biological neuron
  • Fell out of favor in the late 1960's
  • (Minsky and Papert)
  • Perceptron limitations
  • Resurgence in the mid 1980's
  • Nonlinear Neuron Functions
  • Back-propagation training
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

6
Summary of Applications
  • Function approximation
  • Pattern recognition
  • Signal processing
  • Modeling
  • Control
  • Machine learning
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

7
Biologically Inspired
  • Electro-chemical signals
  • Threshold output firing
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

8
The Perceptron
  • Binary classifier functions
  • Threshold activation function
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

9
The Perceptron Threshold Activation Function
  • Binary classifier functions
  • Threshold activation function
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

10
Linear Activation functions
  • Output is scaled sum of inputs
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

11
Nonlinear Activation Functions
  • Sigmoid Neuron unit function
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

12
Layered Networks
  • .
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

13
SISO Single Hidden Layer Network
  • Can represent and single input single output
    functions y f(x)
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

14
Training Data Set
  • Adjust weights (w) to learn a given target
    function y f(x)
  • Given a set of training data X?Y
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

15
Training Weights Error Back-Propagation (BP)
  • Weight update formula
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

16
Error Back-Propagation (BP)
  • Training error term e
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

17
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

18
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

19
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

20
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

21
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

22
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

23
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

24
BP Formulation
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

25
Example The XOR problem
  • Single hidden layer 3 Sigmoid neurons
  • 2 inputs, 1 output
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

x1 x2 y
Example 1 0 0 0
Example 2 0 1 1
Example 3 1 0 1
Example 4 1 1 0
Desired I/O table (XOR)
26
Example The XOR problem
  • Training error over epoch
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

27
Example The XOR problem
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

initial_weights 0.0654 0.2017 0.0769
0.1782 0.0243 0.0806 0.0174 0.1270
0.0599 0.1184 0.1335 0.0737
0.1511 final_weights 4.6970 -4.6585
2.0932 5.5168 -5.7073 -3.2338 -0.1886
1.6164 -0.1929 -6.8066 6.8477 -1.6886
4.1531
28
Example The XOR problem
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples

Mapping produced by the trained neural net
x1 x2 y
Example 1 0 0 0.0824
Example 2 0 1 0.9095
Example 3 1 0 0.9470
Example 4 1 1 0.0464
29
Example Overtraining
  • Single hidden layer 10 Sigmoid neurons
  • 1 input, 1 output
  • References
  • Introduction
  • History
  • Biologically Inspired
  • Applications
  • The Perceptron
  • Activation Functions
  • Hidden Layer Networks
  • Training with BP
  • Examples
Write a Comment
User Comments (0)
About PowerShow.com