Genesis Orals template - PowerPoint PPT Presentation

About This Presentation
Title:

Genesis Orals template

Description:

Lunar Landing from LL1. Moon. LL1. Lander Departs for Moon: 95 m/s. Landing: 2330 m/s. 8.5 days later. Lunar Sample Return Mission. MWL - 19. Martin Lo, Min-Kun Chung ... – PowerPoint PPT presentation

Number of Views:107
Avg rating:3.0/5.0
Slides: 33
Provided by: lloydp7
Category:

less

Transcript and Presenter's Notes

Title: Genesis Orals template


1
Lunar Sample Return via the Interplanetary
Supherhighway
Lunar Orbit
AIAA/AAS Astrodynamics Specilaist
Conference Martin.Lo_at_jpl.nasa.gov Min-Kun.Chung_at_jp
l.nasa.gov
JPL Caltech
8/6/2002
2
Agenda
  • Lunar Sample Return Mission Overview
  • Baseline Mission Scenario
  • Lunar L2 Case (LL2)
  • Mission Performance Comparison

3
Mission Overview
  • Goal Collect and Return Lunar Samples to Earth
  • Aitken Basin on Backside of Moon, (180, -57)
  • Launch Combo, the Combined Flight System
  • Communications Orbiter
  • Desire Continuous Communications Coverage Between
    Earth and Lander Module
  • Lander/Return Module
  • Sample Collection in Sun, 2 Weeks Available
  • Return to Earth (non-specific target)

4
Key Results
  • Metric Total DV of
  • Combo
  • Lander/Return Module
  • Communications Orbiter
  • Trade Time for Total DV
  • Best Case 1446 m/s Less than Conic Case
  • Baseline 1020 m/s Less than Conic Case

Case DT (days) Total DV (m/s) -Conic DV (m/s)
LL2 146 8586 1020
LL1 151 8663 943
EL1 553 8160 1446
Conic 23 9606 0
5
(No Transcript)
6
Key Concepts Used in the Paper
  • Lunar L2 Halo Link Earth to Lunar Backside
  • Colombo (L1)
  • Farquhar Halo Orbits
  • Dynamical Systems Theory
  • Poincaré, Connelly, McGehee
  • Gomez, Jorba, Llibre, Martinez, Masdemont, Simó
  • Hiten-Like Transfers
  • Belbruno, Miller
  • Lo, Ross
  • Koon, Lo, Marsden, Ross
  • Heteroclinic Connection Theory
  • Barden, Howell
  • Koon, Lo, Marsden, Ross

7
JPL LTool Team
  • Martin Lo Section 312
  • Task Manager
  • Larry Romans Section 335
  • Cognizant S/W Engineer (Marthematica Developer)
  • George Hockney Section 367
  • S/W Architecture Sys Engineer
  • Brian Barden Section 312
  • Trajectory Design Algorithms
  • Min-Kun Chung Section 312
  • Astrodynamics Tools
  • James Evans Section 368
  • Infrastructure S/W, Visualization Tools

8
Case LL2 1020 m/s Cheaper Than Conic
BASELINE CASE
Case DT (day) Total DV (m/s)
LL2 146 8586
LL1 151 8663
EL1 553 8160
Conic 23 9606
9
Case LL1 943 m/s Cheaper Than Conic
Case DT (day) Total DV (m/s)
LL2 146 8586
LL1 151 8663
EL1 553 8160
Conic 23 9606
10
Case EL1 1446 m/s Cheaper Than Conic
Case DT (day) Total DV (m/s)
LL2 146 8586
LL1 151 8663
EL1 553 8160
Conic 23 9606
11
LL2 Case Direct Transfer to LL2 Lissajous Orbit
  • Lunar Transfer
  • LL2 Lissajous Orbit
  • Lunar Landing
  • Lander Return

12
LL2 Case Trans-Lunar Phase
13
LL2 Case Lunar Phase
14
LL2 Case Earth Moon Rotating Frame
15
LL2 Case EME2000 Inertial Frame
16
LL2 Case Sun-Earth Rotating Frame
17
LL2 Case Mission Sequence DVs
Mission Sequence Date (2009) DT (days) Combo DV (m/s) Lander DV (m/s) Orbiter DV (m/s)
Translunar Injection 6/14 0 3122
Manifold Insertion 6/18 4 570
LL2 Halo Arrival 6/25 11
Lander LL2 Departure 7/7 23 35
Lander Landing 7/17 33 2335
Lander Liftoff 7/28 44 2424
Earth Return 11/7 146
Navigation 25 50 25
DV Total 3717 4844 25
18
LL1 Case LL2 via LL1
  • Insert into LL1 Stable Manifold
  • Heteroclinic Connection for Comm. Orbiter
  • Lunar Landing from LL1

19
LL1 Case Mission Sequence DVs
Mission Sequence Date (2009) DT (days) Combo DV (m/s) Lander DV (m/s) Orbiter DV (m/s)
Translunar Injection 6/9 0 3100
LL1 Halo Insertion 6/14 5 600
Orbiter LL1 Departure 6/19 10 14
Orbiter LL2 Arrival 7/7 28 0
Lander LL1 Departure 7/10 31 95
Lander Landing 7/16 37 2330
Lander Liftoff 7/28 49 2424
Earth Return 11/7 151
Navigation 25 50 25
DV Total 3725 4899 39
LL2 Case
20
EL1 Case LL2 via Earth L1
  • Reduce LL2 LOI DV Launch to EL1 Fall to LL2
  • Once There, Follows LL2 Case

FAIR/DART Trajctory
EL2
EL1
21
EL1 Case Mission Sequence DVs
Mission Sequence Date (2009) DT (days) Combo DV (m/s) Lander DV (m/s) Orbiter DV (m/s)
Earth Launch 5/30/08 0 3193
EL1 Insertion 8/29/08 91 60
LL2 Halo Arrival 6/25 391 13
Lander LL2 Departure 7/7 403 35
Lander Landing 7/17 413 2335
Lander Liftoff 7/28 424 2424
Earth Return 11/7 553
Navigation 25 50 25
DV Total 3291 4844 25
Reduction by Order of Magnotide
LL2 Case
22
Conic Case (S. Williams, JPL)
  • Conic Trans-Lunar Orbit
  • Lander in 100-km Lunar Parking Orbit
  • Orbiter in Highly Elliptical Orbit
  • 100x8700 km, 12 hr Period

23
Conic Case (S. Williams, JPL)
Mission Sequence Date (2009) DT (days) Combo DV (m/s) Lander DV (m/s) Orbiter DV (m/s)
Translunar Injection 7/16 0 3100
Separation 7/17 1
Lunar Orbit Insertion 7/20 4.5 979 481
Lander Apoapsis Burn 7/20 4.54 23
Lander Landing 7/20 4.58 1703
Lander Liftoff 8/3 18.5 3220
Earth Return 8/8 23
Navigation 25 50 25
DV Total 3125 5975 506
24
Libration Point Mission Lowers DV
  • Saves Up to 1446 m/s!
  • Provides Continuous Communication
  • Trade DV for Time

Case DT (days) ComboDV (m/s) Lander DV (m/s) Orbiter DV (m/s) Total DV (m/s) -Conic DV (m/s)
LL2 146 3717 4844 25 8586 1020
LL1 151 3725 4899 39 8663 943
EL1 553 3291 4844 25 8160 1446
Conic 23 3125 5975 506 9606 0
25
END
  • END

26
LL1 Case LL2 via LL1
  • Insert into LL1 Stable Manifold
  • Heteroclinic Connection for Comm. Orbiter
  • Lunar Landing from LL1

27
LL1 Case LL2 via LL1
  • Insert into LL1 Stable Manifold
  • Heteroclinic Connection for Comm. Orbiter
  • Lunar Landing from LL1

28
LL1 Case LL2 via LL1
  • Insert into LL1 Stable Manifold
  • Heteroclinic Connection for Comm. Orbiter
  • Lunar Landing from LL1

29
Interplanetary Superhighway in the Earths
Neighborhood
  • Collection of Invariant Manifolds of
    Quasiperiodic Orbits in the Solar System
  • Coupled Three Body Systems

30
Mission Design with LTool
  • Lissajous Orbits and Manifold
  • Trans-Lunar Trajectory
  • Lander Sample Collection in Sun
  • Lander Insertion Trajectory
  • Heteroclinic Connection from LL1 to LL2
  • Interplanetary Connection from EL1 to LL2
  • Lander Return Trajectory

31
References
  • Barden, Howell, Formation Flying in the Vicinity
    of Libration Point Orbits, AAS 98-169, Monterey,
    CA, 2/98
  • Barden, Howell, Dynamical Issues Associated with
    Relative Configurations of Multiple Spacecraft
    Near the Sun-Earth/Moon L1 Point, AAS 99-450,
    Girdwood, Alaska, 8/99
  • Gomez, Masdemon, Simo, Lissajous Orbits Around
    Halo Orbits, AAS 97-106, Huntsville, Alabama,
    2/97
  • Howell, Barden, Lo, Applications of Dynamical
    Systems Theory to Trajectory Design for a
    Libration Point Mission, JAS 45(2), April 1997,
    161-178
  • Howell, Marchand, Lo, The Temporary Capture of
    Short-Period Jupiter Family Comets from the
    Perspective of Dynamical Systems, AAS 00-155,
    Clearwater, FL, 1/2000
  • Koon, Lo, Marsden, Ross, Heteroclinic Connections
    between Lyapunov Orbits and Resonance Transitions
    in Celestial Mechanics, to appear in Chaos

32
References
  • Koon, Lo, Marsden, Ross, The Genesis Trajectory
    and Heteroclinic Connections, AAS99-451,
    Girdwood, Alaska, August, 1999
  • Koon, Lo, Marsden, Ross, Shoot the Moon,
    AAS00-166, Clearwater, Florida, January, 2000
  • Lo, The InterPlanetary Superhighway and the
    Origins Program, IEEE Aerospace2002 Conference,
    Big Sky, MT, February, 2002
  • Lo et al., Genesis Mission Design, AIAA 98-4468,
    Boston, MA, August, 1998
  • Serban, Koon, Lo, Marsden, Petzold, Ross, Wilson,
    Halo Orbit Correction Maneuvers Using Optimal
    Control, submitted to Automatica, April, 2000
  • Scheeres, Vinh, Dynamis and Control of Relative
    Motion in an Unstable Orbit, AIAA Paper
    2000-4135, August, 2000
Write a Comment
User Comments (0)
About PowerShow.com