Matlab Controller Design - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Matlab Controller Design

Description:

Matlab Controller Design Control system toolbox State feedback and observer design Biochemical reactor example Control System Toolbox Provides industry-standard ... – PowerPoint PPT presentation

Number of Views:45
Avg rating:3.0/5.0
Slides: 12
Provided by: ecsUmass3
Category:

less

Transcript and Presenter's Notes

Title: Matlab Controller Design


1
Matlab Controller Design
  • Control system toolbox
  • State feedback and observer design
  • Biochemical reactor example

2
Control System Toolbox
  • Provides industry-standard algorithms and tools
    for systematically analyzing, designing and
    tuning linear control systems.
  • System can be specified as a transfer function,
    state-space and pole-zero-gain model.
  • Provides tools for model representation
    conversion and low-order approximation of
    high-order systems
  • Allows series, parallel, feedback and general
    block-diagram connection of linear models.
  • Interactive tools and command-line functions,
    such as the step response plot, allow
    visualization of system behavior in the time
    domain.
  • Provides tools for automatic PID controller
    tuning, root locus analysis, and other
    interactive and automated techniques.
  • Controller design can be validated by verifying
    rise time, overshoot, settling time and other
    requirements.

3
Selected Functions
  • Model creation conversion
  • tf create transfer function (TF) model
  • zpk create zero/pole/gain (ZPK) model
  • ss create state-space (SS) model
  • System gain dynamics
  • dcgain steady-state gain
  • pole system poles
  • zero system zeros
  • pzmap pole-zero map
  • Time domain analysis
  • step step response
  • stepinfo step response characteristics (rise
    time, ...)
  • impulse impulse response
  • lsim response to user-defined input signal
  • lsiminfo linear response characteristics
  • gensig generate input signal for lsim

4
Selected Functions cont.
  • Compensator design
  • place pole placement
  • estim form estimator given estimator gain
  • reg form regulator given state-feedback and
    estimator gains
  • State-space models
  • ctrb controllability matrix
  • obsv observability matrix
  • Time delays
  • pade pade approximation of time delay
  • Model dimensions characteristics
  • class model type ('tf', 'zpk', 'ss', or 'frd')
  • size model size and order
  • isproper true for proper models
  • isstable true for models with stable dynamics

5
Linear System Simulation
  • y,t step(sys)
  • Plots the step response of the model sys (created
    with either tf, zpk, or ss). The time range and
    number of points are chosen automatically.
  • gtgt num-2 1
  • gtgt den1 6 5
  • gtgt gtf(num,den)
  • Transfer function
  • -2 s 1
  • -------------
  • s2 6 s 5
  • gtgt step(g)

6
State Feedback and Observer Design
  • CO ctrb(A,B) returns the controllability matrix
    B AB A2B ...
  • OB obsv(A,C) returns the observability matrix
    C CA CA2 ...
  • K place(A,B,P) computes a state-feedback matrix
    K such that the eigenvalues of A-BK are those
    specified in vector P. No eigenvalue should have
    a multiplicity greater than the number of inputs.
  • L place(A,C,P) computes an observer matrix L
    such that the eigenvalues of A-LC are those
    specified in vector P. No eigenvalue should have
    a multiplicity greater than the number of inputs.

7
Biochemical Reactor Example
  • Continuous bioreactor model
  • KS 1.2 g/L, mmax 0.48 h-1, YX/S 0.4 g/g, D
    0.15 h-1, Si 20 g/L
  • gtgt sys 'bioreactor_stability'
  • gtgt load_system(sys)
  • gtgt open_system(sys)
  • gtgt x1,u1,y1,dx1trim(sys,1 1,)
  • gtgt x1
  • x1
  • 7.7818
  • 0.5455

8
Linear Model Generation
  • gtgt sys_io(1)linio('bioreactor_stability/Dilution'
    ,1,'in')
  • gtgt sys_io(2)linio('bioreactor_stability/Bioreacto
    r',1,'out')
  • gtgt linsys linearize(sys,sys_io)
  • a
  • Bioreactor(1
    Bioreactor(2
  • Bioreactor(1 -8.596e-005 1.472
  • Bioreactor(2 -0.3748
    -3.829
  • b
  • Dilution (pt
  • Bioreactor(1 -7.78
  • Bioreactor(2 19.45
  • c
  • Bioreactor(1 Bioreactor(2
  • bioreactor_s 1 0
  • d
  • Dilution (pt
  • bioreactor_s 0
  • gtgt lambdaeig(linsys.a)
  • lambda
  • -0.1500
  • -3.6793

9
In-Class Exercise
  • Construct the linear state-space model
  • Check controllability and observability of the
    state-space model
  • Compute the state feedback gains that place the
    eigenvalues of A-BK at l -0.05, -0.1
  • Compute the observer gains that place the
    eigenvalues of A-LC at l -0.01, -0.02
  • Simulate the performance of the output feedback
    controller

10
Controller and Observer Gains
  • gtgt a-8.596e-005 1.472 -0.3748 -3.829
  • gtgt b-7.78 19.45
  • gtgt c1 0
  • gtgt d0
  • gtgt rank(ctrb(a,b))
  • ans 2
  • gtgt rank(obsv(a,c))
  • ans 2
  • gtgt p-0.25 -0.3
  • gtgt kplace(a,b,p)
  • k
  • 1.8971 0.5903
  • gtgt p-2.5 -3.0
  • gtgt lplace(a',c',p)'
  • l
  • 1.6709
  • 0.3737

11
Simulink Model
Write a Comment
User Comments (0)
About PowerShow.com