Chapter 2: Digital Image Fundamentals - PowerPoint PPT Presentation

About This Presentation
Title:

Chapter 2: Digital Image Fundamentals

Description:

Digital Image processing(cont.) imresize ... Displaying an image(cont.) Spatial domain Matlab Basics Digital image representation : ... – PowerPoint PPT presentation

Number of Views:1021
Avg rating:3.0/5.0
Slides: 71
Provided by: ncnu1
Category:

less

Transcript and Presenter's Notes

Title: Chapter 2: Digital Image Fundamentals


1
Images and MATLAB
2
Matlab Advantages
  • Every variable in Matlab is a multidimensional
    matrix.
  • Highly modular.
  • No memory allocation is necessary.
  • Matlab enables its own garbage collection.
  • Simple interface for complex mathematical
    concepts.

3
Image Types
  • Intensity imagesscaled to represent intensities
    (uint8 0,255, double 0,1)
  • Binary imageslogical array of 0s and 1s
  • Indexed imagesLook up table x, map
  • RGB imagestruecolor, array of (mn3)

Checking the image type isind, isbw, isgray,
isrgbConverting image types rgb2ind, rgb2gray,
gray2ind, ind2gray,.
4
Data Classes
Converting between types B data_class_name(A)
for example B double(A)
5
Conversions
  • When converting between data classes and types it
    is important to keep the value range for each
    data class
  • gtgt img double(img)/255
  • gtgt img im2double(img)

6
MATLAB supported image formats
  • JPEG Joint Photographics Experts Group
  • TIFF Tagged Image File Format
  • GIF Graphics Interchange Format
  • BMP Microsoft Bitmap Format
  • PNG Portable Network Graphics

7
Displaying an image(cont.)
  • Spatial domain

8
Matlab Basics
  • Digital image representation 2D function
    f(x,y) -gt finite discrete quantities
  • Coordinate Conventions
  • img(r,c)r rows (height)c cols (width)
  • The first pixelimg(1,1)

9
Matlab ????
  • C\MATLAB7\toolbox\images\imdemos
  • ??Matlab Help?????????
  • ???????????????,?????
  • ???????????

10
Different Image Types
  • Indexed images
  • Intensity (grayscale) images
  • Binary images
  • RGB (true-color) images

11
Reading an image
  • imread()
  • ??????????array????
  • ??I,map imread(filename)
  • I imread(filename)
  • ex I imread('pout.tif')
  • I????????
  • ?????,??ans

12
Displaying an image
  • imshow()
  • ????????????
  • ?? imshow(I)
  • imshow(I,map)
  • Figure, imshow()
  • ?????????????
  • ?? figure,imshow(I)

13
Displaying an image(cont.)
  • imshow(I, low, high)
  • imshow(I, )
  • ??displays I as a grayscale intensity image,
    specifying the data range for I. The minimum
    value in I is displayed as black, and the maximum
    value is displayed as white.
  • pixval
  • ??cursor on image to show pixel values
  • ?? imshow(I),pixval

14
Displaying an image(cont.)
  • colorbar
  • ??To display an image with a colorbar that
    indicates the range of intensity values.
  • ?? imshow(I), colorbar
  • ex
  • I imread('pout.tif')
  • imshow(I) , colorbar

15
Writing an image
  • imwrite()
  • ??????????
  • ?? imwrite(I,filename,format)
  • ex
  • imwrite(I,'pout.jpg','JPEG')

16
Image information
  • Image size size()
  • ex
  • I imread('saturn.png')
  • size(I)
  • M,N size(I)
  • M??I??
  • N??I??

17
Image information
  • whos
  • ??display information about an image .
  • ex whos I
  • Imfinfo( filename )
  • ?? display information about image file .
  • ex info imfinfo('saturn.png')

18
Digital Image processing
  • ?????
  • g im2bw(I, T)
  • ??Convert intensity image I to binary image g
    using threshold T, where T must be in range 0,
    1.
  • ex
  • I imread('pout.tif')
  • g im2bw(I, 0.4)
  • imshow(g) colorbar

19
Digital Image processing(cont.)
  • ?????
  • Rgb2gray()
  • ???RBG???????gray-level???ex
  • I2 imread ('onion.png')
  • figure,imshow(I2) colorbar
  • g2 rgb2gray(I2)
  • figure,imshow(g2) colorbar

20
Digital Image processing(cont.)
  • ??
  • imcomplement( )
  • ??The negative of an image.
  • ex
  • I2 imread ('onion.png')
  • figure,imshow(I2) colorbar
  • J2 imcomplement(g2)
  • figure, imshow(J2) colorbar

21
Grayscale images ????
  • Matlab example
  • wimread('pout.tif')
  • figure, imshow(w), pixval on
  • figure create a window to place graphic object
  • imshow display matrix
  • Data type of w?
  • 291x240 uint8 (unsigned integer 8 bits

22
Binary image ????
  • Matlab example
  • w2imread('circles.png')
  • figure, imshow(w2), pixval on
  • Data type of w?
  • 256x256 logical
  • Pixel value is 0 or 1

23
RGB (true color) images ????
  • Matlab example
  • w3imread('peppers.png')
  • figure, imshow(w3), pixval on
  • size(w3)
  • w3(100,200,2)
  • w3(100,200,13)
  • w3(100,200,)

24
RGB color model
25
Pixel depth
  • Pixel depth the number of bits used to represent
    each pixel in RGB space
  • Full-color image 24-bit RGB color image
  • (R, G, B) (8 bits, 8 bits, 8 bits)

26
Indexed color image ??????
  • Matlab example
  • wIimread('trees.tif')
  • figure, imshow(w), pixval on
  • Whats wrong?

27
Indices
Color Map
28
Indexed color image
  • Matlab example
  • wI,wmapimread('trees.tif')
  • figure, imshow(wI, wmap)
  • How do we know its an indexed image?

29
Indexed color image ??????
  • Matlab example
  • wimread(emu.tif)
  • figure, imshow(w), pixval on
  • Whats wrong?

30
Indexed color image
31
Indexed color image
  • Matlab example
  • w,wmapimread(emu.tif)
  • imshow(w, wmap)
  • How do we know its an indexed image?

32
Get information about image
  • imfinfo('emu.tif')

Filename 'emu.tif'
FileModDate '12-Jul-2004 114000'
FileSize 119804
Format 'tif'
FormatVersion Width
331 Height 384
BitDepth 8
ColorType 'indexed' ByteOrder
'little-endian' NewSubfileType 0
BitsPerSample 8
Colormap 256x3 double
33
Get information about image
  • imfinfo(emu.tif)

Filename 'emu.tif'
FileModDate '12-Jul-2004 114000'
FileSize 119804
Format 'tif'
FormatVersion Width
331 Height 384
BitDepth 8
ColorType 'indexed' ByteOrder
'little-endian' NewSubfileType 0
BitsPerSample 8
Colormap 256x3 double
34
Data types and conversion
  • uint8 image must be converted to double before
    any arithmetic operation
  • wimread('pout.tif')
  • ww1 fail
  • wdouble(w) data type is also conversion
    func.
  • ww1 ok

35
Write image matrix to file
  • Matlab code
  • wimread('pout.tif')
  • imwrite(w, 'pout.jpg','jpg')
  • General form
  • imwrite(X, map, filename, format)

36
Zooming and Shrinking Digital Images
  • Zooming
  • Create a new pixel location.
  • Assign a gray-level to those new locations
  • Nearest neighbor interpolation
  • Pixel replication a checkboard effect
  • Bilinear interpolation using four nearest
    neighbors
  • v(x, y)axbycxyd
  • where a, b, c, and d are determined from the
    gray-level of the four neighbors.
  • Shrinking
  • Direct shrinking causes aliasing
  • Expansion then Shrinking blurring the image
    before shrinking it and reduce aliasing.

37
Sampling Methods of Inverse Mapping
  • If transformed pixel X locates among
  • P1, P2, P3 and P4
  • Nearest neighbor method
  • I(X) I(P3 )
  • where I(p) is the intensity value of pixel p
  • Bi-linear interpolation
  • I(X) (1-a)(1-b)I( P1 ) a(1-b)I(P2 )
  • (1-a)bI(P3 ) abI(P4 )
  • where a, b are the fractional parts of X
  • Bi-cubic interpolation
  • based on cubic splines

P2
P1
P3
P4
38
Nearest neighbor interpolation
  • The closest neighbor is chosen , by rounding the
    new indexes to original images coordinates .

39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
Digital Image processing(cont.)
  • ??????
  • imresize(I,scale,method)
  • ??To change the size of an image.
  • interpolation Method
  • -'nearest Nearest-neighbor interpolation
  • -'bilinear Bilinear (the default)
  • -'bicubic Bicubic interpolation

48
Digital Image processing(cont.)
  • ??????
  • imresize(I,scale,method)
  • ??To change the size of an image.
  • interpolation Method
  • -'nearest Nearest-neighbor interpolation
  • -'bilinear Bilinear (the default)
  • -'bicubic Bicubic interpolation

49
Digital Image processing(cont.)
  • ex
  • I3 imread('circuit.tif')
  • J3 imresize(I3,1.25)
  • figure, imshow(I3)
  • figure, imshow(J3)
  • ex
  • I3 imread('circuit.tif')
  • J4 imresize(I3,100 150, 'bilinear')
  • figure, imshow(I3)
  • figure, imshow(J4)

50
Digital Image processing(cont.)
  • ????
  • imrotate(I, angle)
  • ??To rotate an image.
  • ex
  • I imread('pout.tif')
  • J5 imrotate(I,35)
  • figure, imshow(J5)

51
Contents
  • Histogram
  • Histogram transformation
  • Histogram equalization
  • Contrast streching
  • Applications

52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
Histogram
The (intensity or brightness) histogram shows how
many times a particular grey level (intensity)
appears in an image. For example, 0 - black,
255 white
0 1 1 2 4
2 1 0 0 2
5 2 0 0 4
1 1 2 4 1
histogram
image
56
Histogram equalization (HE)
                               

transforms the intensity values so that the
histogram of the output image approximately
matches the flat (uniform) histogram
57
(No Transcript)
58
(No Transcript)
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
Histogram equalization II.
                               
As for the discrete case the following formula
applies k 0,1,2,...,L-1 L number of grey
levels in image (e.g., 255) nj number of times
j-th grey level appears in image n total number
of pixels in the image

(L-1)
?
64
(No Transcript)
65
(No Transcript)
66
Histogram equalization III
                               

67
(No Transcript)
68
histogram
  • pimread('pout.tif')
  • imshow(p), figure, imhist(p), axis tight

69
Histogram equalization
  • phhisteq(p)
  • imshow(ph), figure, imhist(ph), axis tight

70
Histogram equalization (cont.)
  • ph, thisteq(p)
  • plot(t), title('transform function')

Exercise1. Apply histogram equalization to tire
image
Write a Comment
User Comments (0)
About PowerShow.com