Title: OntologyBased FreeForm Query Processing for the Semantic Web
1Ontology-Based Free-Form Query Processing for
the Semantic Web
- Thesis proposal
- by
- Mark Vickers
2The Problem
- Searching the web for an answer to a question is
hard. - Returns documents (usually too many)
- Can it instead return just the right answers?
- Semantic web
- Proposed ontology-based framework for making
information machine-readable - Better access to information
- How should semantic web be searched?
3Solution AskOntos a Query System for the
Semantic Web
- Allows free-form queries (unconstrained natural
language queries) - Semantically interprets queries using information
extraction via extraction ontologies - Returns database-like tables of extracted values
4Thesis Statement
- We can build a system that will show how
extraction ontologies can be used to execute
conjunctive, free-form queries over semantically
annotated web pages.
5Extraction Ontologies
Object sets Relationship sets Participation
constraints Lexical Non-lexical Primary object
set Aggregation Generalization/Specialization
6Extraction Ontologies
Data Frame
Internal Representation float
Value Phrase
Value Expression \s\s(\d1,3)(\.\d2)?
Left Context
Key Word Phrase
Key Word Expression (Pprice)(Ccost)
Operation Phrase
Operator gt
Expression (more\sthan)(more\scostly)
7AskOntos Overview
Extraction Ontology Repository
Query
AskOntos
Ontology Matching
Extracted Values
Extracted Values
Extracted Values
Extracted Query Values
Extracted Values
Form XQuery
Answer
Web Pages
8Step 1. Parse Query
Find me the and of all
s I want a
price
mileage
red
Nissan
1998
or newer
gt Operator
9Step 2. Find Corresponding Ontology
Find me the price and mileage of all red Nissans
I want a 1998 or newer
gt Operator
Similarity value 6
Similarity value 2
10Step 3. Formulate XQuery Expression
- Conjunctive queries run over selected
ontologys extracted values
11Step 3. Formulate XQuery Expression
- Value-phrase-matching words determine conditions
- Conditions
- Color red
- Make Nissan
- Year gt 1998
gt Operator
12Step 3. Formulate XQuery Expression
1 for doc in document("file///c/ontos/owlLib
/Car.OWL")/rdfRDF 2 for Record in
doc/owlThing 3 4 let id
substring-after(xsstring(Record/_at_rdfabout),
"CarIns") 5 let Color doc/carColor_at_rdfID
concat("ColorIns", id)/carColorValue/text() 6
let Make doc/carMake_at_rdfIDconcat("MakeI
ns", id)/carMakeValue/text() 7 let Year
doc/carYear_at_rdfIDconcat("YearIns",
id)/carYearValue/text() 8 let Price
doc/carPrice_at_rdfIDconcat("PriceIns",
id)/carPriceValue/text() 9 let Mileage
doc/carMileage_at_rdfIDconcat("MileageIns",
id)/carMileageValue/text() 10 11
where(Color"red" or empty(Color)) and 12
(Make"Nissan" or empty(Make)) and 13
(Yeargt"1998" or empty(Year)) 14 return
ltRecord ID"id"gt 15 ltPricegtPricelt/Pric
egt 16 ltMileagegtMileagelt/Mileagegt 17
ltColorgtColorlt/Colorgt 18
ltMakegtMakelt/Makegt 19 ltYeargtYearlt/Yeargt
20 lt/Recordgt
For each owlThing
Get the instance ID and extracted values
Check conditions
Return values
13Step 4. Run XQuery Expression Over
Ontologys Extracted Data
- Uses Qexo 1.7, GNUs XQuery engine for Java
- Use XSLT to transform results to HTML table
14Evaluation of AskOntos
- Measure success by
- Ability to match query to correct ontology
- Ability to translate free-form queries into
formal queries - We will create
- Extraction ontologies for car ads, diamonds,
ski resorts, real estate, theatre schedules - Queries
- 20 Conjunctive queries for each domain
- Queries gathered from research group members
15Query Translation Metrics
Find me the price and mileage of all red Nissans
I want a 1998 or newer.
Human conversion
PROJECT Price, Mileage,Color, Make,
Year SELECT (Color,,red),
(Make,,Nissan),
(Year,gt,1998)
16Query Translation Metrics
Find me the price and mileage of all red Nissans
I want a 1998 or newer.
for doc in document("file///.../Car.OWL")/rd
fRDF for Record in doc/owlThing
where(Color"red" or empty(Color)) and
(Make"Nissan" or empty(Make)) and
(Year"1998" or empty(Year)) return ltRecord
ID"id"gt ltPricegtPricelt/Pricegt
ltColorgtColorlt/Colorgt
ltMakegtMakelt/Makegt
ltYeargtYearlt/Yeargt lt/Recordgt
Human conversion
PROJECT Price, Mileage,Color, Make,
Year SELECT (Color,,red),
(Make,,Nissan),
(Year,gt,1998)
Automated conversion
PROJECT Price,Color, Make, Year SELECT
(Color,,red),
(Make,,Nissan),
(Year,,1998)
17Conclusion/Contributions
- AskOntos
- Is a free-form query system for the semantic web
- Applies information extraction for query
processing - Answers questions with extracted data values
- Contributions
- Web queries that use semantic annotations
- Web queries returning answers from extracted data
- Processing free-form queries using ontologies
18END
19TREC 2004 QA Question Topics
20Related Research
21Evaluating the Framework
- Input
- Obituaries ontology
- 25 obituaries from two newspapers
Four of eighteen object sets shown above. Data
from Salt Lake Tribune and Arizona Daily Star
22Scaling to the Web
- Ontologies crawl and harvest web pages
- Ontologies extract values from pages
- Ontologies indexed (??)
- Queries extracted by relevant ontologies
- Rely on Google-like technology