Title: Wissenschaftliche Grundlagen 3D Stadtmodelle
1 A Concept ofEffective Landmark Depictionin
Geovirtual 3D Environments by View-Dependent
Deformation Matthias Trapp Hasso-Plattner-In
stitut Computer Graphics Systems Group Prof. Dr.
Jürgen Döllner University Potsdam www.hpi.uni-pot
sdam.de/3d www.3dgi.de
2- Motivation
- Conceptual Overview
- Tagging Geometric Preprocessing
- Deformation Model
- Rendering Technique
- Conclusions
31. Motivation
- Tourist Map (St. Petersburg)
Source www.escapetravel.spb.ru
41. Motivation Previous Related Work
- Guidelines for landmark depictions (Vinson 1999)
- LM should be identifiable and distinguishable
- Ascertained instead of abstract representations
- LM should be visible in all map scales
- Previous approaches
- Use photos instead of abstract depiction
- Iconification / application of symbols
- Scaled depiction of landmarks in 2D
Lee 2001
Baudisch 2003
Elias 2006
51. Motivation Visibility Problem
- Restricted visibility of landmark objects in
interactive systems - Depicted landmarks are too small/far away
- Occluded by unimportant buildings
61. Motivation Solution for Interactive Systems
7- Motivation
- Conceptual Overview
- Tagging Geometric Preprocessing
- Deformation Model
- Rendering Technique
- Conclusions
82. Conceptual Overview
- Integration into visualization pipeline (Ware
2000) - 3-Phase Process
- Tagging augment city model with landmark
information - Preprocessing transform city model to render
geometry - Rendering rendering of processed scene geometry
9- Motivation
- Conceptual Overview
- Tagging Geometric Preprocessing
- Deformation Model
- Rendering Technique
- Conclusions
103. Tagging Geometric Preprocessing
- Tagging a City Model
- Associate weight w(ci) to a city model object ci
- Defining importance function
- Partition of C into landmarks and non-landmark
objects - Augmentation can be automated via services
113. Tagging Geometric Preprocessing
- Input
- Tagged city model
- Output
- Landmark deformation data
- City model geometry
12- Motivation
- Conceptual Overview
- Tagging Geometric Preprocessing
- Deformation Model
- Rendering Technique
- Conclusions
135. Deformation Model
- Tasks
- Landmark scaling
- Displacement of surrounding buildings
- Mutual landmark displacement
- Input
145. Deformation Model Landmark Scaling
- Quadratic scaling function
-
- Scaling depend on distance object-to-camera d
- Property defined by scale interval
- Interval derived from weight w(ci)
Projected size of a landmark
Scaling function
155. Deformation Model Displacement
- Displacement of environment
- Prototypic radial displacement
- Translation of surrounding buildings
- Inverse linear scaling
- Mutual landmark displacement
- Naive spring model (Bobrich 1996)
- Topology is not preserved
- Problems with frame-to-frame coherence
- ? Limiting factor of this landmark visualization
16- Motivation
- Conceptual Overview
- Tagging Geometric Preprocessing
- Deformation Model
- Rendering Technique
- Conclusions
176. Rendering Technique
- Rendering Requirements
- Programmable graphics hardware (Vertex Shader)
- Scene graph-based rendering system
- Multi-Pass evaluation
- Pre-Traversal Pass
- Collect all landmark attribute nodes
- Perform view-frustum culling to nodes
- Application of deformation model
- Rendering Pass Apply deformation results
- Shape-preserving (uniform) scaling
- Per-Vertex displacement
18- Motivation
- Conceptual Overview
- Tagging Geometric Preprocessing
- Deformation Model
- Rendering Technique
- Conclusions
196. Conclusions
- Characteristics
- Interactive, view-dependent landmark depictions
- Fully accelerated by modern 3D graphics hardware
- Uses vertex deformation and displacement
- Open Problems Future Work
- Improvement coherency of deformation model
- Research alternative deformation variants
- Non-uniform deformation
20Contact
- Matthias Trappmatthias.trapp_at_hpi.uni-potsdam.de
- Computer Graphics Systems GroupProf. Dr. Jürgen
Döllnerwww.hpi.uni-potsdam.de/3d - Researchgroup 3D-Geoinformationwww.3dgi.de
21References
- Elias, Paelke, Kuhnt, Kartographische
Visualisierung von Landmarken, Aktuelle
Entwicklungen in Geoinformation und
Visualisierung, GEOVIS 2006, 5./6. April 2006,
Potsdam, Kartographische Schriften Band 10, 2006. - Vinson, Design Guidelines for Landmarks to
Support Navigation in Virtual Environments,
Proceedings of CHI 99, ACM, 1999. - C. Ware, Information Visualization Perception
for Design, Morgan Kaufmann, 2000 - J.Bobrich, Ein neuer Ansatz zur kartographischen
Verdrängung auf der Grundlage eines mechanischen
Federmodells, Ph.D. Thesis, Vol. C 455, Deutsche
Geodätische Kommission, München, 1996 - P. Baudisch and Ruth Rosenholtz, Halo a
Technique for Visualizing Off-Screen Locations,
Proceedings of the ACM SIGCHI conference on Human
factors in computing systems, pp. 481-488, 2003 - Y.C. Lee, A. Kwong, L. Pun and A. Mack,
Multi-Media Map for Visual Navigation, Journal
of Geospatial Engineering, Hong Kong, 2001