Wissenschaftliche Grundlagen 3D Stadtmodelle - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Wissenschaftliche Grundlagen 3D Stadtmodelle

Description:

Wissenschaftliche Grundlagen 3D Stadtmodelle – PowerPoint PPT presentation

Number of Views:83
Avg rating:3.0/5.0
Slides: 22
Provided by: jrgend
Category:

less

Transcript and Presenter's Notes

Title: Wissenschaftliche Grundlagen 3D Stadtmodelle


1
A Concept ofEffective Landmark Depictionin
Geovirtual 3D Environments by View-Dependent
Deformation Matthias Trapp Hasso-Plattner-In
stitut Computer Graphics Systems Group Prof. Dr.
Jürgen Döllner University Potsdam www.hpi.uni-pot
sdam.de/3d www.3dgi.de
2
  • Motivation
  • Conceptual Overview
  • Tagging Geometric Preprocessing
  • Deformation Model
  • Rendering Technique
  • Conclusions

3
1. Motivation
  • Tourist Map (St. Petersburg)

Source www.escapetravel.spb.ru
4
1. Motivation Previous Related Work
  • Guidelines for landmark depictions (Vinson 1999)
  • LM should be identifiable and distinguishable
  • Ascertained instead of abstract representations
  • LM should be visible in all map scales
  • Previous approaches
  • Use photos instead of abstract depiction
  • Iconification / application of symbols
  • Scaled depiction of landmarks in 2D

Lee 2001
Baudisch 2003
Elias 2006
5
1. Motivation Visibility Problem
  • Restricted visibility of landmark objects in
    interactive systems
  • Depicted landmarks are too small/far away
  • Occluded by unimportant buildings

6
1. Motivation Solution for Interactive Systems
7
  • Motivation
  • Conceptual Overview
  • Tagging Geometric Preprocessing
  • Deformation Model
  • Rendering Technique
  • Conclusions

8
2. Conceptual Overview
  • Integration into visualization pipeline (Ware
    2000)
  • 3-Phase Process
  • Tagging augment city model with landmark
    information
  • Preprocessing transform city model to render
    geometry
  • Rendering rendering of processed scene geometry

9
  • Motivation
  • Conceptual Overview
  • Tagging Geometric Preprocessing
  • Deformation Model
  • Rendering Technique
  • Conclusions

10
3. Tagging Geometric Preprocessing
  • Tagging a City Model
  • Associate weight w(ci) to a city model object ci
  • Defining importance function
  • Partition of C into landmarks and non-landmark
    objects
  • Augmentation can be automated via services

11
3. Tagging Geometric Preprocessing
  • Input
  • Tagged city model
  • Output
  • Landmark deformation data
  • City model geometry

12
  • Motivation
  • Conceptual Overview
  • Tagging Geometric Preprocessing
  • Deformation Model
  • Rendering Technique
  • Conclusions

13
5. Deformation Model
  • Tasks
  • Landmark scaling
  • Displacement of surrounding buildings
  • Mutual landmark displacement
  • Input

14
5. Deformation Model Landmark Scaling
  • Quadratic scaling function
  • Scaling depend on distance object-to-camera d
  • Property defined by scale interval
  • Interval derived from weight w(ci)

Projected size of a landmark
Scaling function
15
5. Deformation Model Displacement
  • Displacement of environment
  • Prototypic radial displacement
  • Translation of surrounding buildings
  • Inverse linear scaling
  • Mutual landmark displacement
  • Naive spring model (Bobrich 1996)
  • Topology is not preserved
  • Problems with frame-to-frame coherence
  • ? Limiting factor of this landmark visualization

16
  • Motivation
  • Conceptual Overview
  • Tagging Geometric Preprocessing
  • Deformation Model
  • Rendering Technique
  • Conclusions

17
6. Rendering Technique
  • Rendering Requirements
  • Programmable graphics hardware (Vertex Shader)
  • Scene graph-based rendering system
  • Multi-Pass evaluation
  • Pre-Traversal Pass
  • Collect all landmark attribute nodes
  • Perform view-frustum culling to nodes
  • Application of deformation model
  • Rendering Pass Apply deformation results
  • Shape-preserving (uniform) scaling
  • Per-Vertex displacement

18
  • Motivation
  • Conceptual Overview
  • Tagging Geometric Preprocessing
  • Deformation Model
  • Rendering Technique
  • Conclusions

19
6. Conclusions
  • Characteristics
  • Interactive, view-dependent landmark depictions
  • Fully accelerated by modern 3D graphics hardware
  • Uses vertex deformation and displacement
  • Open Problems Future Work
  • Improvement coherency of deformation model
  • Research alternative deformation variants
  • Non-uniform deformation

20
Contact
  • Matthias Trappmatthias.trapp_at_hpi.uni-potsdam.de
  • Computer Graphics Systems GroupProf. Dr. Jürgen
    Döllnerwww.hpi.uni-potsdam.de/3d
  • Researchgroup 3D-Geoinformationwww.3dgi.de

21
References
  • Elias, Paelke, Kuhnt, Kartographische
    Visualisierung von Landmarken, Aktuelle
    Entwicklungen in Geoinformation und
    Visualisierung, GEOVIS 2006, 5./6. April 2006,
    Potsdam, Kartographische Schriften Band 10, 2006.
  • Vinson, Design Guidelines for Landmarks to
    Support Navigation in Virtual Environments,
    Proceedings of CHI 99, ACM, 1999.
  • C. Ware, Information Visualization Perception
    for Design, Morgan Kaufmann, 2000
  • J.Bobrich, Ein neuer Ansatz zur kartographischen
    Verdrängung auf der Grundlage eines mechanischen
    Federmodells, Ph.D. Thesis, Vol. C 455, Deutsche
    Geodätische Kommission, München, 1996
  • P. Baudisch and Ruth Rosenholtz, Halo a
    Technique for Visualizing Off-Screen Locations,
    Proceedings of the ACM SIGCHI conference on Human
    factors in computing systems, pp. 481-488, 2003
  • Y.C. Lee, A. Kwong, L. Pun and A. Mack,
    Multi-Media Map for Visual Navigation, Journal
    of Geospatial Engineering, Hong Kong, 2001
Write a Comment
User Comments (0)
About PowerShow.com