Scaling Laws for KPZ Surface Growth Nicholas Chia - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Scaling Laws for KPZ Surface Growth Nicholas Chia

Description:

Understanding the dynamics of every physical interface imaginable ... This flies in the face of the concept of universality. Power Law Noise. References ... – PowerPoint PPT presentation

Number of Views:187
Avg rating:3.0/5.0
Slides: 15
Provided by: nichol2
Category:

less

Transcript and Presenter's Notes

Title: Scaling Laws for KPZ Surface Growth Nicholas Chia


1
Scaling Laws for KPZ Surface GrowthNicholas Chia
Committee MembersRalf BundschuhGustavo
LeoneJunko ShigemistuDavid StroudDongping
Zhong
2
Outline
  • The KPZ Equation
  • Purpose
  • Scaling Laws
  • Properties
  • Analytical Solutions
  • Perturbation Theory
  • Renormalization Group
  • d 1, d ? 8, and higher dimensionalities
  • Difficulties
  • Fixed point
  • Numerical models
  • Eden model
  • Ballistic deposition
  • Experiment
  • Flame fronts
  • Biophysical example bacteria growth
  • Universality and the continuum limit

3
Why Bother?
  • The Prize
  • Understanding the dynamics of every physical
    interface imaginable
  • Examples tumor cells, flame fronts, forest
    formation, geological formation, avalanches,
    shorelines, crystal defects, every sort of
    deposition
  • The Problem
  • Difficult equation to solve
  • Perturbation theory results in diverging integral
  • Renormalization Group (RG)
  • Lack of a proper fixed point for d ? 2
  • Universality does not apply to non-equilibrium
    systems
  • Microscopic systems matter noise
  • Different actions govern different interfacial
    surface perhaps no universal solution
  • The Compromise
  • Work around d 2
  • Model microscopic behavior for specific problems
    universality classes

4
Background
  • Scaling Law
  • Interfacial Width
  • The EW equation
  • The KPZ equation
  • Noise

5
General Properties
  • Tilt and Translational Invariance
  • Hopf Transformation
  • Vortex Free Burgers Equation
  • Stationary State Skewness
  • Lack of particle-hole symmetry
  • Relationship between ? and z

6
Solving the KPZ Equation
  • Perturbation Theory
  • One loop calculations
  • result in divergent integral
  • Two loop diagrams cancel exactly for d 1
  • Renormalization Group
  • Momentum cutoff
  • Examples of Other Approaches
  • Functional renormalization
  • Non-perturbative renormalization (C Castellano)
  • Replica renormalization (M Lassig)
  • Dimensional renormalization (K Wiese)
  • Solutions
  • Success for d 1, ? ½
  • Upper-critical dimensionality?? d gt dc, ? 0,
    dc 4?
  • High dimensionality ?upper ? 1/d
  • Lässig conjecture ?2/(d2)
  • Infinite dimensionality d ? ?, ? 0
  • Problems
  • d 2 ??
  • Fixed point for d ? 2

7
Fixed Point
  • Fixed point for d 1 enables us to find a
    solution via perturbation theory.
  • Lack of KPZ region fixed point for d ? 2
  • Complete lack of nonlinear fixed point for
    the critical dimension, d 2

8
Eden Model
Plischke and Rácz
9
Ballistic Deposition
Family and Viscek
10
Flame Fronts
  • Experimental Works
  • Zhang et al. ?0.71(7) lens paper 5.5 mm/s
  • Maunuksela et al. ?0.48(1) copier paper 0.51
    mm/s
  • Maunuksela et al. ??0.5 cigarette paper 1.64
    mm/s
  • Report short range irregularities ??0.7-0.8
  • Short range dynamics remain unexplained

11
Bacterial Growth
  • Highly nutrient dependent
  • Rate limited reaction KPZ
  • Nutrient limited reaction DLA
  • EW behavior observable depends on agar
    hardness, nutrient level, inhibitor
    concentration, presence of pollutants.

12
Universality
  • Universality
  • All similar processes can be described by the
    same equations, i.e. surface growth of any source
    should be described by KPZ. This because the
    details at the microscopic level does not effect
    the gross properties of the macroscopic level
  • But
  • Experiment and theoretical work show that
    microscopic details do matter, and that different
    surface growth systems exhibit different scaling
    behavior.
  • All studies that verify the concept of
    universality are, in fact, equilibrium studies.
    So it might be best to limit universality to
    equilibrium processes.
  • Zhang found that adjusting the noise term
    effected the scaling behavior of the KPZ system.
    This flies in the face of the concept of
    universality.

13
Power Law Noise
14
References
  • J López and H Jensen, Phys. Rev. Lett. 81 1734
    (1998).
  • M Kardar, G Parisi, and Y Zhang, Phys. Rev.
    Lett. 56 889 (1986).
  • T Haplin-Healy and Y Zhang, Phys. Rep. 254 215
    (1995), and references therein.
  • P Meakin, Phys. Rep. 235 189 (1993). and
    references therein.
  • J Krug, Advances in Phys. 46 139 (1997), and
    references therein.
  • M Nijs, lecture notes from the 6th APCTP Winter
    School (2002), and references therein.
  • N Provatas, T Ala-Nissila, M Grant, K Elder, and
    Luc Piché, Phys. Rev. E 51 4232 (1995).
  • J Maunuksela, M Myllys, O Kahkonen, J Timonen,
    N Provatas, M Alava, and T Ala-Nissila, Phys.
    Rev. Lett. 79 1515 (1997).
  • M Myllys, J Maunuksela, M Alava, T Ala-Nissila,
    and J Timonen, Phys. Rev. Lett. 84 1946 (2000).
  • M Kuittu, M Haataja, and T Ala-Nissila, Phys.
    Rev. E 59 2677 (1999).
  • http//www.phys.washington.edu/dennijs/
  • M Lässig, cond-mat9501094
  • C Castellano, cond-mat9802284
  • K Wiese, cond-mat9406009
Write a Comment
User Comments (0)
About PowerShow.com