Examples - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Examples

Description:

'x.'y.(Horse( x) Dog( y) Faster( x, y)) $y.(Greyhound(y) 'z.(Rabbit( z) Faster( y, z))) 'y.(Greyhound( y) Dog( y)) (background knowledge) ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 20
Provided by: tho9
Category:
Tags: examples

less

Transcript and Presenter's Notes

Title: Examples


1
Examples
2
Example
Everybody loves somebody. Everybody loves a
lover. Show that everybody loves
everybody. "x.y.loves( x, y) "u."v."w.(loves(v,
w) Þ loves(u, v)) Ø"x."y.loves( x, y) negated
conclusion In clausal form they
become loves(x, f( x)) Øloves(v, w), loves(u,
v) Øloves(jack, jill)
3
  • loves(x, f(x)) Premise
  • Øloves(v, w), loves(u, v) Premise
  • Øloves(jack, jill) Goal
  • loves(u, x) 1,2
  • 4,3

4
Horses, dogs, and rabbits
Every horse can outrun every dog. Some
greyhounds can outrun every rabbit. Show that
every horse can outrun every rabbit. "x."y.(Horse
( x) Ù Dog( y) Þ Faster( x, y))
y.(Greyhound(y) Ù "z.(Rabbit( z) Þ Faster( y,
z))) "y.(Greyhound( y) Þ Dog( y)) (background
knowledge) "x."y."z.(Faster(x, y) Ù Faster( y, z)
Þ Faster( x, z)) (background knowledge) Ø"x."y.(H
orse(x) Ù Rabbit(y) Þ Faster(x, y)) negated
conclusion
5
"x."y.(Horse( x) Ù Dog( y) Þ Faster( x,
y)) y.(Greyhound(y) Ù "z.(Rabbit( z) Þ Faster(
y, z))) "y.(Greyhound( y) Þ Dog(
y)) "x."y."z.(Faster(x, y) Ù Faster( y, z) Þ
Faster( x, z)) Ø"x."y.(Horse(x) Ù Rabbit(y) Þ
Faster(x, y)) In clausal form they
become ØHorse( x), ØDog(y), Faster( x,
y) Greyhound(Greg) ØRabbit(z), Faster(Greg,
z) ØGreyhound(y), Dog(y) ØFaster(x, y),
ØFaster(y, z), Faster(x, z) continued
6
Lets transform the goal into clausal
form Ø"x."y.(Horse(x) Ù Rabbit(y) Þ Faster(x,
y)) I Ø"x."y.(Ø(Horse(x) Ù Rabbit(y)) Ú Faster(x,
y)) N Ø"x."y.(ØHorse(x) Ú ØRabbit(y) Ú Faster(x,
y)) ?x. ?y.(Horse(x) Ù Rabbit(y) Ù ØFaster(x,
y)) S ?x. ?y.(Horse(x) Ù Rabbit(y) Ù ØFaster(x,
y)) E Horse(Jack) Ù Rabbit(Smith) Ù ØFaster(Jack,
Smith)) A Horse(Jack) Ù Rabbit(Smith) Ù
ØFaster(Jack, Smith)) D Horse(Jack) Ù
Rabbit(Smith) Ù ØFaster(Jack, Smith)) O
Horse(Jack) Rabbit(Smith) ØFaster(Jack,
Smith)
7
  • Lets try to infer the using resolution
  • ØHorse(x), ØDog(y), Faster(x, y)
  • Greyhound(Greg)
  • ØRabbit(z), Faster(Greg, z)
  • ØGreyhound(y), Dog(y)
  • ØFaster(x, y), ØFaster(y, z), Faster(x, z)
  • Horse(Jack)
  • Rabbit(Smith)
  • ØFaster(Jack, Smith)
  • ØDog(y), Faster(Jack, y) 1,6
  • Faster(Jack, y), ØGreyhound(y) 4,9
  • Faster(Jack, Greg) 2,10
  • Faster(Greg, Smith) 3,7
  • ØFaster(Greg, z), Faster(x, z) 5,11
  • Faster(x, Smith) 12,13
  • 8,14

8
Resolution Strategies
9
Linear Restriction Strategy
  • A linear resolution is one in which one of the
    parents is in the initial database or an ancestor
    of the other parent.
  • Example.
  • 1. p, q
  • 2. p,Øq
  • 3. Øp, q
  • 4. Øp,Øq
  • 5. p 1,2
  • 6. q 3,5
  • 7. Øp 4,6
  • 8. 5,7
  • Linear Resolution is
  • refutation complete!!

10
Theo
  • Theo is theorem prover based on linear resolution
    (as well as other resolution strategies besides
    linearity)
  • Accepts input in clausal form.
  • Uses
  • for ?
  • for ? (doesnt use the set notation for
    clauses, but the OR, i.e. notation, e.g. p(x)
    q(y) instead of p(x), q(y))
  • Distinguish variables from constants, by adding
    parenthesis. E.g. tuna().
  • If you omit parenthesis and write instead just
    tuna, it will be considered a variable.

11
Clausal Curiosity (Theo format)
  • animal(f(x1)), loves(g(x1),x1)
  • ?loves(x2,f(x2)), loves(g(x2),x2)
  • ?animal(y1), ?kills(x3,y1), ?loves(z,x3)
  • ?animal(y2), loves(jack,y2)
  • kills(jack,tuna), kills(curiosity,tuna)
  • ?cat(x4), animal(x4)
  • cat(tuna)
  • ?kills(curiosity,tuna)

animal(f(x1)) loves(g(x1),x1) loves(x2,f(x2))
loves(g(x2),x2) animal(y1) kills(x3,y1)
loves(z,x3) animal(y2) loves(jack,y2) kills(
jack(),tuna()) kills(curiosity(),tuna()) cat(x4
) animal(x4) cat(tuna()) negated_conclusion ki
lls(curiosity(),tuna())
12
Theo output
  • Proof Found!
  • Axioms
  • 1 gtanimalfx lovesgxx
  • 2gtlovesxfx lovesgxx
  • 3 gtanimalx killsyx loveszy
  • 4 gtanimalx lovesyx
  • 5gtkillsjacktuna killscuriositytuna
  • 6 gtcatx animalx
  • 7 gtcattuna
  • Negated conclusion
  • 8Sgtkillscuriositytuna

Phase 0 clauses used in proof 9Sgt(8a5b)
killsjacktuna 10Sgt(9a3b) animaltuna
lovesxjack 11gt(10a6b) lovesxjack
cattuna 12Sgt(11b7a) lovesxjack 15 gt(4a1a)
lovesxfy lovesgyy 16 gt(15a2a) lovesgxx Phases
1 and 2 clauses used in proof 17Sgt(16a,12a)
13
Compile
  • You can create well formed formulas (WFF) i.e.
    FOL sentences and then convert into clausal form
    using compile
  • _at_ is forall
  • ! is exists
  • Variables and constants distinguished by
    quantification. Variables are quantified,
    constants arent.
  • Use ( and ) for functions and relations.
  • Use and for grouping sentences.
  • is AND, is OR, gt is IMPLIES
  • Example
  • _at_x met_with_at_sea(x) noticed_thing(x) gt
    entered_in_log(x).

14
Books
  • The only books in this library, that I do not
    recommend for reading, are unhealthy in tone
  • The bound books are all well-written
  • All the romances are healthy in tone
  • I do not recommend that you read any of the
    unbound books.
  • All the romances in this library are
    well-written.
  • _at_x book(x) recommend(x) gt healthy(x).
  • _at_x book(x) healthy(x) gt recommend(x).
  • _at_x book(x) bound(x) gt wellwritten(x).
  • _at_x romance(x) gt healthy(x).
  • _at_x romance(x) gt book(x).
  • _at_x book(x) bound(x) gt recommend(x).
  • theorem (negated)
  • _at_x romance(x) gt wellwritten(x) .

15
Songs
  • Things sold in the street are of no great
    value
  • Nothing but rubbish can be sold for a song
  • Eggs of the Great Auk are very valuable
  • It is only what is sold in the streets which is
    really rubbish.
  • Conclusion An egg of the Great Auk is not to
    be had for a song.
  • _at_x soldInStreet(x) gt ofGreatValue(x).
  • _at_x_at_y exchange(y,x) song(x) gt rubbish(y).
  • _at_x greatAukEgg(x) gt ofGreatValue(x).
  • _at_x rubbish(x) gt soldInStreet(x).
  • _at_x soldInStreet(x) gt rubbish(x).
  • theorem (negated)
  • !x!y greatAukEgg(y) exchange(y,x)
    song(x) .

16
Birds
  • No birds, except ostriches, are 9 feet high
  • There are no birds in this aviary that belong
    to anyone but me
  • No ostrich lives on mince-pies
  • I have no birds less than nine-feet high.
  • Conclusion No bird in this aviary lives on
    mince-pies.
  • _at_x bird(x) height(x,Nine) gt ostrich(x).
  • _at_x ostrich(x) gt bird(x).
  • _at_x bird(x) gt belongs(x,Me).
  • _at_x ostrich(x) gt lives(x,MincePies).
  • _at_x bird(x) belongs(x,Me) gt height(x,Nine).
  • theorem (negated)
  • _at_x bird(x) gt lives(x,MincePies) .

17
British Lion
  • No discussions in our Debating-Club can rouse
    the British Lion, so long as they are checked
    when they become too noisy
  • Discussions, unwisely conducted, endanger the
    peacefulness of our Debating-Club
  • Discussions, that go on while Tomkins is in the
    Chair, rouse the British Lion
  • Discussions in our Debating-Club, when wisely
    conducted, are always checked when they become
    too noisy.
  • !x discussion(x) in(x, OurDebatingClub)
    noisy(x) gt checked(x) rouse(x,
    BritishLion) .
  • _at_x discussion(x) checked(x) gt rouse(x,
    BritishLion). background
  • _at_x_at_y discussion(x) wiselyConducted(x)
    in(x,y) gt endanger(x, Peacefulness, y).
  • _at_x_at_y discussion(x) in(x,y) chair(Tomkins, y)
    gt rouse(x, BritishLion).
  • _at_x discussion(x) in(x, OurDebatingClub)
    wiselyConducted(x) gt noisy(x) gt checked(x).

18
  • Conclusion Discussions, that go on while
    Tomkins is in the chair, endanger the
    peacefulness of our Debating-Club..
  • theorem (negated)
  • _at_x discussion(x) in(x,OurDebatingClub)
    chair(Tomkins, OurDebatingClub) gt endanger(x,
    Peacefulness, OurDebatingClub) .

19
Algebra
  • In an associative system with left and right
    solutions,
  • there is a right identity element.
  • P(x,y,z) means xy z
  • (xy)z x(yz)
  • xy u yz v
  • _at_x_at_y_at_z_at_u_at_v_at_w p(x,y,u) p(y,z,v) p(u,z,w) gt
    p(x,v,w).
  • _at_x_at_y_at_z_at_u_at_v_at_w p(x,y,u) p(y,z,v) p(x,v,w) gt
    p(u,z,w).
  • _at_x_at_y!s p(x,s,y).
  • _at_x_at_y!s p(s,x,y).
  • theorem (negated)
  • !e_at_x p(x,e,x).
Write a Comment
User Comments (0)
About PowerShow.com