Aligning Sequences With Genetic Algorithms - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Aligning Sequences With Genetic Algorithms

Description:

Aligning Sequences With Genetic Algorithms – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 42
Provided by: notre7
Category:

less

Transcript and Presenter's Notes

Title: Aligning Sequences With Genetic Algorithms


1
Aligning Sequences With Genetic Algorithms
Cédric Notredame
2
How Can I Use A Multiple Sequence Alignment?
chite ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAK
KGGELWRGLKD wheat --DPNKPKRAPSAFFVFMGEFREEFKQKNPK
NKSVAAVGKAAGERWKSLSE trybr KKDSNAPKRAMTSFMFFSSDFR
S----KHSDLS-IVEMSKAAGAAWKELGP mouse
-----KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLS
P . . .. . . .
. chite AATAKQNYIRALQEYERNGG- wheat
ANKLKGEYNKAIAAYNKGESA trybr AEKDKERYKREM---------
mouse AKDDRIRYDNEMKSWEEQMAE . .

3
Why Is It Difficult To Compute A multiple
Sequence Alignment?
BIOLOGY
What is A
GOOD
Alignment?
chite ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGG
ELWRGLKD wheat --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKS
VAAVGKAAGERWKSLSE trybr KKDSNAPKRAMTSFMFFSSDFRS--
--KHSDLS-IVEMSKAAGAAWKELGP mouse
-----KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLS
P . . .. . . .
.
COMPUTATION
What is
THE
good Alignment?
4
Why Is It Difficult To Compute A multiple
Sequence Alignment
BIOLOGY
COMPUTATION
CIRCULAR PROBLEM....
Good
Good
Alignment
Sequences
5
The Computational Problem
2 Globins gt1 sec
3 Globins gt2 mn
4 Globins gt5 hours
5 Globins gt3 weeks
6 Globins gt9 years
7 Globins gt1000 years
6
Existing Solution
1-Carillo and Lipman
-MSA, DCA.
-Few Small Closely Related Sequence.
-Do Well When They Can Run.
2-Segment Based
-DIALIGN, MACAW.
-May Align Too Few Residues
3-Iterative
-HMMs, HMMER, SAM.
-Slow, Sometimes Inaccurate
-Good Profile Generators
4-Progressive
-ClustalW, Pileup, Multalign
-Fast and Sensitive
7
Progressive Alignment
Feng and Dolittle, 1980 Taylor 1981
Dynamic Programming Using A Substitution Matrix
8
SAGA
Biological Objective Function
SAGA
Alignment
?
Biological Quality
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
The Biological Problem. The Charlie Chaplin
Paradox
17
(No Transcript)
18
An Alignment is a STORY
19
Comparing Sequences Reconstructing Evolution
20
Most Common Objective Function Sums of Pairs
ModelEvery sequence is the ancestor of every
sequence
PROBLEM -over-estimation of the mutation
costs -Requires a weighting scheme
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
T-Coffee A Fast Heuristic for SAGA-COFFEE
25
(No Transcript)
26
Progressive Alignment Principle and its
Limitations
27
The Extended Library Principle
28
The Extended Library Principle
29
The Extended Library Principle
30
The Triplet Assumption
SEQ A
SEQ B
31
T-Coffee Progressive Alignment
Notredame, Higgins, Heringa, 2000
Dynamic Programming Using The extended Library
32
Mixing Local and Global Alignments
Local Alignment
Global Alignment
Extension
Multiple Sequence Alignment
33
Validation Using BaliBase
34
Mixing Heterogenous Information With T-Coffee
Local Alignment
Global Alignment
Multiple Alignment
Structural
Specialist
Extension
Multiple Sequence Alignment
35
Why Using GAs
Time
SAGA
SAGA-COFFEE
T-COFFEE
36
Des Higgins, UCC, Ireland Jaap Heringa, MRC,
UK Liisa Holm, EMBL-EBI, UK Orla OSullivan,
UCC Chantal Abergel, IGS, France
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com